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FOREWORD

The Army Mathematics Steering Committee (AMSC) sponsors annually
the Army Conferences on Applied Mathematics and Computing. As the
title indicates these meetings deal with the mathematics needed to
understand the world around us. This is a contrast with core
mathematics, which in the main, does not deal directly with events
and objects of the physical world. Since very few of the papers
presented at the four conferences held to date were in the field
of pure mathematics, these meetings are rightly named. The U.S.
Military Academy served as the host of the fifth meeting in this
series, which was held at West Point, New York, on 15-18 June
1987. Colonel David Cameron served as Chairperson on Local
Arrangements. He was assisted with this task by Majors David
Arney and Scott Huxel. The members of the AMSC would like to
thank these three individuals for all their efforts in
coordinating the many details needed to conduct this successful
scientific meeting.

The program of this years conference consisted of three parts,
namely: (a) Contributed papers by Army, academic and other
scientific personnel; (b) Three special sessions; and (c) Seven
invited addresses. There were more than fifty contributed papers
presented in the technical sessions. About half of these papers
were contributed by scientists from ten Army installations. These
presentations gave the attendees an opportunity to hear about
scientific research being conducted within these laboratories.
The topics for the special sessions were organized in three
different areas, namely, stochastic analysis, solid modeling and
CAD/CAM, and mathematical aspects of composites. For the invited
speaker phase of the meeting, the Program Committee obtained the
services of the following nationally known scientists to talk on
topics of current interest to Army personnel:

SPEAKERS AND AFFILIATION TITLE AND ADDRESSES

Professor David Munford Some Mathematical Problems
URI Center on Intelligent Arising from Computer
Control Systems Vision
Harvard University

Professor Roland Glowinski On the Numerical Solution
University of Houston of Time Dependent Problems

in High Dimensions

Dr. Sukmar Chakravarthy Unified Euler and Navier-
Rockwell International Stokes Numerical Methods
Corporation
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Professor Robert Taylor Computation Mechanics:
University of California- Today and Tomorrow
Berkel ey

Professor Charles VanLoan Parallel Matrix
Mathematical Sciences Computations on Loosely
Institute Coupled Systems of Array
Cornell University Processors

Professor Anthony Jameson Computational Methods
Princeton University for Transonic Flow

Professor James Glimm The Interaction on
Courant Institute Nonlinear Waves

The success of the conference was due to many individuals, the
active and enthusiastic members of the audience, the chairperson,
and the many speakers. The members of the AMSC were pleased with
the fact that most of the speakers were able to find time to
prepare papers for the Transactions. These research articles will
enable many persons that were not able to attend the symposium to
profit by these contributions to the scientific literature.
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Lie Transforms Applied To A Nonlinear
Parametric Excitation Problem*

Jonathan L. Len
Center for Applied Mathematics

Richard H. Rand
Department of Theoretical and Applied Mechanics

Cornell University
Ithaca, New York 14853

Abstract

We use Lie transforms to approximate the Poincar6 map of a weakly non-
linear periodic perturbation of the simple harmonic oscillator in order to study
the stability of the trivial solution. Resonant frequencies, corresponding to
nonremovable terms in the differential equation, are identified through O( 2 ).
We show that detuning from resonance stabilizes the trivial solution when
the perturbation contains no linear periodic terms. Finally, we study a typi-
cal bifurcation between two lowest-order resonant frequencies. A MACSYMA
program which performs the Lie transform algorithm to arbitrary order is pre-
sented in the appendix with a sample run.

1 Introduction
In this paper we present some results concerning the stability of the trivial

solution of the equation

x+ W 2x + (f(t,x)=0 (1)

where f(t,x) is T-periodic in t. Taylor-Fourier expandable in x and t respec-
tively, and f(t,x) satisfies f(t,O) =_ 0. The hamiltonian structure of eq.(1) I

'This work was partially supported by NSF grant 85-09481 and by the Army Research Office
through the Mathematical Sciences Institute, Cornell Tniversity, Ithaca. NY 14853
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permits us to use Lie transforms to reduce the nonautonomous hamiltonian
induced by eq.(1) to an autonomous one by means of a periodic canonical near-
identity transformation. The resulting autonomous hamiltonian describes the
Poincar6 map in a neighborhood of the origin.

Analysis of the Poincar4 map gives substantial information concerning the
original equation. The presence of a periodic point in the Poincar6 map implies
the existence of a periodic orbit in the original equation. In particular, a
periodic saddle point corresponds to a hyperbolic periodic orbit, and a periodic
center corresponds to an elliptic periodic orbit.

We begin by describing the Lie transform algorithm as used in this work.
We then present a theorem which defines the O(c) and 0( 2 ) resonances for
the general case of eq.(1), and show that almost all higher order resonances
are stable.

Next, we study the properties of the trivial solution of a simple equation of
the type (1). We identify the O(c) and O(d2 ) resonances, and characterize the
stability of the trivial solution for all nonzero w. Results of the Lie transform
analysis are compared with numerically generated Poincar6 maps.

Finally, we study a bifurcation between O(e) resonances of cubic and quad-
ratic nonlinearities. In this example, a 4?r-periodic hyperbolic orbit becomes a
27r-periodic hyperbolic orbit through a sequence of bifurcations.

2 Results
We consider the general equation

~+ W 2 X+ C g(t)XNalO= (2)

where the g,(t) are periodic and the Na are positive integers. This equation
was studied extensively in [1]. Here we summarize some results and refer the
reader to [1] for additional information.

In canonical variables q and p, eq.( 2 ) is generated by the hamiltonian

h(q, p,t)= . + -2+ c 9g(t)qN a"  (3)
2 2 a

The change of variables

q = V'-' 7 sin(O + wt), (4)
p = v2-'w cos(O + Lt)

reduces eq.(3) to the 0(c) hamiltonian

H(J,0,t) c eZ 1-ga(t) ( 2 l ) N ' / 2 sin N- (O +wt) _EHI (J,0,t). (5)
a NaO

2



We will apply the Lie transform procedure to this 0(c) hamiltonian.

Definition 1 Let

w(t,X, e) = w1(t,z) + Cw2 (t,X) + 4E2 3(t,X) +

be the Lie generating function defining a canonical transformation which re-
duces the hamiltonian (5) to an autonomous one. Then w is a resonance at
0(en) if it is a pole of wn(t,x) but not of Wk(t,Z), for 1 < k < n -.

We denote by f1 the set of frequencies which are resonant at 0(,n).
An equivalent definition of a resonant frequency may be formulated in terms

of the near-identity transformation generated by periodic averaging.
For example, the 0(E n ) resonance for the linear Mathieu equation

+ W2 + Ex cost = 0

is w = n/2, for n > 1. Resonant frequencies correspond to non-removable
terms in the hamiltonian (with respect to Lie transforms) or in the differential
equation (with respect to periodic averaging).

In order to show how to generate all 0(c) and O(c2 ) resonances for eq.(2),
we introduce some notation. By assumption, each g,(t) is periodic and may
therefore be expanded in a Fourier series. Let

2r 2 go(t)e-'tdt

be the Fourier coefficients of g,(t) for integer ps. Let M,, denote the set of
frequencies of g,(t), that is,

M.= {A: c(f) 0,IL E Z}.

Then
go(t) = E c(O.)e"At.

As shown in [1], Qi consists of all w satisfying

A p E N,,- 2v' 0< v <

and S12 consists of all w satisfying

"tE M.

+ yE A113/ +7 0<v<N,

Nc,+N - 2(v+) 0< <IV

6N, $ N3
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which are not also included in S1.
It is also shown in [1] that if w 0 S11 U f?2 U {O}, then the resulting reduced

hamiltonian is of the form

K= +efi(J) + 2 (j+...

where fl and f2 contain integer or half-integer powers of J. This implies that
the origin of the Poincar6 map is a center, and therefore the trivial solution is
a stable elliptic orbit.

We show here that if the perturbation is strictly nonlinear then detuning
creates a hyperbolic periodic orbit which traps the trivial solution, stabiliz-
ing it. We then analyze a bifurcation problem between periodic orbits near
resonances showing how a 47r-periodic orbit bifurcates into a 27r-periodic orbit.

3 Lie Transforms

An important characteristic of autonomous hamiltonian systems is that the
harniltonian is constant along solutions of the system of differential equations.
If the phase space has dimension two then the solutions are level curves of the
hamiltonian. The reader is referred to (3] or [4] for a complete discussion of
hamiltonian mechanics.

In this work we use Lie transforms to reduce eq.(3) to an autonomous
hamiltonian, and then analyze the level curves of this autonomous hamilto-
nian to determine the behavior of solutions which have initial conditions close
to the trivial solution. The implementation of the Lie transform algorithm
which is presented here implicitly constructs a canonical change of coordinates
which performs the reduction to an autonomous form. It is obvious that no
autonomous canonical change of variables can make this reduction. Therefore
the hamiltonian with respect to the new coordinates must be determined by
means of a generating function or some equivalent method which takes into
account the nonautonomous nature of the transformation. The Lie transform
method is an efficient perturbation scheme which explicitly generates the func- 4
tional form of the reduced hamiltonian under an implicitly defined canonical
periodic near-identity transformation.

Let x and y denote the old and new coordinates, respectively. Let E denote
the perturbation parameter. Let H denote the hamiltonian with respect to
the x coordinates, and let K denote the transformed hamiltonian. We assume
that H and K may each be written as power series in c,

H(t, x,) = Ho(t,x) + EH(t,x) + E2H 2(t,x) + .

and
h'(t, x, ) = h'o(t, x) + K (t, x) + c2'K2(t. X) + ..
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The relation between x and y is defined implicitly in terms of a Lie gener-
ating function w(t, x) as

oy = W} (6)
TC_

where { , } is the Poisson bracket operator. For two-dimensional phase space,
the Poisson bracket operator is

Of g f Og

f'g} = 2 aX2 aXl1
In words, the new coordinate system evolves from the old one by means of a
"hamiltonian flow" in the evolution quantity -. See (3] for a complete discussion
of this procedure. It is straightforward to show that the change of variables x --
y defined by eq.(6) is canonical. This consists of showing that the fundamental
Lagrange brackets are preserved under the transformation.

The reduced hamiltonian K is related to H by

K 0 = H0

K, = H, + {w, Hj} +- - (7)

1 1 Ow2
K 2 = H2 + j{wl,gK +Hj}+ j-5-+ {w2,H0}

Although this sequence can be written in closed form to arbitrary order, we
need it only through 0(c 2). See [2] for full details of this topic.

It is important to interpret eq.(7) correctly. The right-hand side of each
equation is a function of x and t, and the Poisson brackets are computed with
respect to the x coordinate system. The resulting function K is evaluated at
K(t,x). The x are dummy variables, and may be replaced by y to give the
transformed hamiltonian.

The sequence (7) gives the transformed hamiltonian for an arbitrary gen-
erating function w. The trick is to choose successive wi to make the corre-
sponding Ki as simple as possible. This means choosing wi at the ith step
such that

Ow,
- + {wi, Ho}

removes as many terms as possible in the right-hand side of the ith equa-
tion in (7). While this operator is linear, it has a nontrivial kernel; therefore
some terms may not be removable. In the context of periodic perturbations.
this means that wi cannot be chosen to make Ki autonomous directly. How-
ever, after all nonessential terms have been removed to desired order using Lie

5
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transforms, a final canonical transformation of the form
J --+ I

0 - 4 O+at

for some scalar a can always be found which makes it autonomous.
The method may be simplified considerably by the following trick: Apply

a canonical transformation which removes the 0(1) terms of the hamiltonian
so that H0 - . Then all Poisson brackets in (7) involving H0 vanish, and the
terms which are removable are precisely the t-dependent ones. The appropriate
choice of wi is to take -vi as the t-antiderivative of the t-dependent terms.
The resulting K is autonomous by construction. This modified Lie transform
algorithm has been implemented in MACSYMA since the amount of algebra
required to carry the perturbation scheme through even 0(c 2) is too daunting
to compute by hand with any confidence. The program and sample runs are
given in the appendix. For a further discussion on the use of computer algebra
in perturbation schemes, see [1], [61, and [7].

While the simplification of the algorithm is important from the computer
algebra point of view, it is perhaps more important for analytical purposes.
This modified method was used to determine the 0(E) and 0(E0) resonances
of the general equation given previously.

In principle, this strategy may be used in any system where the c = 0
problem may be solved exactly. For example, a system of linear oscillators
with weak nonlinear coupling may be studied using this simplification.

4 Determining the Resonant Frequencies

In this section we briefly describe the procedure by which resonances may be
found using Lie transforms. For complete details, see [1]. .'%P

We assume that the equation is of the form
+ W2 x + CE ga(t)xN - I = 0.

In canonical variables q and p, this equation gives rise to the hamiltonian

2 ,22

2 2 - g. (t) q' .  (8)

Our first step, as described at the end of the previous section, will be to perform
a transformation of coordinates to a system in which the hamiltonian contains
no 0(1) terms. The change of variables

q Vl sin(O +1 s)W (9) ]
p = 2v 7 "w c os( + ,,t w (9

6
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reduces eq.(8) to the simplified hamiltonian

H(J,,t)g(t)(--- _/ sinN (+ wt) EHl(J,0,t). (10)
N.

We now apply the Lie transform procedure to transform eq.(10) into an
autonomous hamiltonian. Note that no 0(1) terms are present. As noted at
the end of the previous section, this simplification permits us to compute the
Lie generating function at each step by integration of exponentials.

To identify the resonances, we first compute w, for arbitrary w. This gives
a function similar in form to H1 but whose coefficients are rational functions
of w. The poles of these coefficients, which correspond to non-removable terms
in H1 (J, 0, t), are frequencies which are resonant at O(c). Having identified the
O(c) resonances, we may then implicitly compute W2 to identify possible 0(C2 )
resonances.

We first introduce some notation. By assumption, each g (t) is periodic
and may therefore be expanded in a Fourier series. Let

C~fa) 2 7r jg(t)e-"Atdt

be the Fourier coefficients of ga(t) for integer p. Let Ma denote the set of
frequencies of g,(t), that is,

M t={i: c(' 0 0, IL E Z}.

Then

ga1(t) = ~ cf~~i
,uEM.

Expanding the trigonometric functions with the binomial theorem and insert-
ing the expansion for ga(t) in eq.(10) gives

N.
H, (J,0,t) = e t a)e)e2O(2 No)ett((2No)w+II) (11)

1 -0~ rwhere

N ' 2" 1 (12)

Proceeding formally, w, is just the negative of the t-antiderivative of H: *"IJ[ ( (2v-V ,_vNx)+I
No~~~w - a(,,, e , 2v N )elt((2 _ ,) ~ )

a- PE R , 1-0 z((2 
]-V )w + /II

This choice of w, makes K1 the t-independent part of HI.

-~ %~ % pp p.U./p%~~~ *.*.



The poles of w, are w = 0, which we shall ignore, and

W Na - 2v' 0 < v < N,.

Let f% denote the set of 0(c) resonances. Let 02 denote the set of poles of
w2 which are not in nj. Then Q2 the set of 0(E2 ) resonances. The equation
defining w2 is dnnWiw = 2K2 - fw,, Kl} - fw,,H}. 

(13)at

It is sufficient to determine the possible exponents introduced in the right hand
side of eq.(13) since the poles of w2 correspond to roots of the exponents. Since
K1 and K 2 are autonomous by construction, the new resonances can come only
from the term {wj, Hl}. It is clear from the definition of a a ) that

Oa( ) _ N) a)

-J 2J 5AL"

Therefore,

fw,,Hl} ~ ~ N NY a,, a(,'6 (bN. - vN#) ,102(+6)-N.-0
a,O AEM P=08=0 z((2v - Na,)w + p)

(14)
et((2(,,+)N, -N),++-v)

If a frequency is a resonance, then it is a root of the t-dependent exponential.
It is easily seen that Q2 consists of all w which satisfy

p E Ma,

0 < b< No
W~~ N.(6 0 'N6Na, $ ~ ,

but which are not also included in Q1. ,
We conclude this section with some examples which demonstrate how to

compute the resonant frequencies.
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4.1 Examples

Example 1
+ W 2x + Cx cos(t) = 0

For this example,
N1 = 2, M1 = {-1, 1}.

f21 is generated by the numerators ±1 and denominators 2 - 2v with
v = 0 or v = 2. The only positive resonance is w = 1/2. For 2 , the
possible numerators are 1 + 1 and -1 - 1. The denominators are given by
2+2-2(v+6) wherev=0,1,2and6=0,1,2withv5. Thereforev+6
can take on the values 1,2, and 3, and consequently the allowed denominators
are ±2. The only frequency generated is w = 1. Therefore

1

- 2'12= {1}.

This agrees with the classical result for the Mathieu equation, which is that
the O(ef) resonance is n/2.

Example 2
x+ W + cos(t) + CX3 = 0

Then
N 1 = 2, M ={-1,1}.

N2 = 4, M 2 = {0}.

III is determined exactly as in the previous example since the set M2 cannot
contribute a nonzero frequency. (The O(c) resonances can always be found by
considering each term of the perturbation separately). For 12, the resonance
w = 1 is generated as in the previous example. The "mixing" of the sets
M1 and M 2 introduces the possible numerators -1 + 0, with corresponding
denominators 2 + 4 - 2(v + b) where v = 0,1,2 and 6 = 0,1,2,3,4. The
forbidden pairs are (v,6) = (0,0), (v,6) (1,2), and (v,6) = (2,4). The
allowed values of v + 6 are 1,2,3,4,and 5, giving allowed denominators ±2 and
+4, so the new resonance is w = 1/4:

= {2

112 =  {1,1} •

4

Example 3
+w 2 x++CX' cos(t)=0. n odd

9
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Here

N, =n+1, MI.={-1,1}.

The resonant frequencies are

T = - --1 -- '

f2= 1 1 1 .
n' n -2' n -4'"

Example 4
+w 2 X + EX n cos(t) = 0, n even

For this example,

N, =n+1, M 1 ={-1,1}.

The resonant frequencies are

nI n- 'n 4' 2

Example 5

i + w 2X + EX(cos t + Cos 5t) + EX 3(1 + cos3t + cos 7t) = 0

Then
N 1 = 2 M, ={-1,1,-5,5}
N 2 =4 M 2 = {0,-3,3,-7,7}.

The resonant frequencies are

23
12345 7 8

Qj = { ,1, T, -, 3,7},

02 = {- 12 43 72, 8, 4,5,6,8 12}.

3 34' 3'2 4 3'2'
Example 6

+ w 2 X + Excost + Cx2 cos 5t + Cx3 cos 12t + cx4(1 + cos 22t) 0

Here
N, =2 M1 = {-1,1}
N 2 = 3 .112 = {-5,5}
N 3 = 4 13 = {-12,12}
N 4 = 5 14 = {0, -22,22}.

10
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The 0(c) resonant frequencies are

1 5 2 22Q, {-, I-,3, , 5,6 , -22}.
2 3 5 3

The 0( 2 ) resonances are

27 34 17 23 34
={34,23,21,17,- ,12, - 11,10, -T - 7-
27 13 17 11 34 23 9 17 21 11 17 10

T'T' T2' ' 5'2' 4 ' 5' ' 5' 3'
13 17 11 5 12 7 2 120 7 4 5 5 11
4' 61 4'2' '5' 2,7' 7'35''4' 1 '6'3 ' 5 "

5 The Stability of the Trivial Solution Near
Resonance

Having identified the resonant frequencies, we now study the behavior of so-
lutions close to resonance. We first study the major qualitative difference
between linear and nonlinear parametric excitation.

We consider equations of the form

+X + Ef(tX)= 0 (15)

where f(t, x) is periodic in t and strictly nonlinear in x. The case when f(t, x)
contains terms which are linear in x with periodic coefficients has been studied
previously [5].

Let w0 be a resonance, and take w in eq.(15) to be
W
2 

- 2 +t CWdl +
I 
4E232"-""

02 L2 + + 2 +

Then eq.(15) becomes

X+ W2X + ef(t,X) + (EWi +E 2w 2 + ... )x = 0.

Detuning from resonance introduces a linear t-independent perturbation. Since
detuning at 0(0) introduces a term of the form EOJ to H, it also contributes *

a term to Kn which is independent of 0 and linear in J. Since a nonlinear term
of order O(x m ) in f(t,x) contributes terms of order O(J(+l)/ 2 ) to K1 and
terms of higher order to subsequent Ki, the stabilizing effect of the detuning
will dominate in a sufficiently small neighborhood of the origin. (This analysis

requires that E be held fixed, while J may be taken as small as necessary. For
sufficiently small J the linear term dominates.) This implies that a strictly
nonlinear periodic perturbation cannot cause the trivial solution to be unstable
away from resonance.

11 '
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6 The Effect of Detuning From Resonance
We demonstrate the effect of detuning from resonance on the equation

S+ w2X+ex 3 Cos t = O. (16)

The resonances, as shown in a previous section, are

t

24=,- {1,4}.

The MACSYMA implementation of the Lie transform algorithm, which is listed
in the appendix, shows that for w2 = L + CW1 + C2 w2 the 0(c 2 ) the reduced
hamiltonian is

K = - 2j3 cos 40 + 4w 1
2 J 2 cos 20 - EJ2 cos 202

(17)
- 42 3 + J- w jo J + wieJ.

3

The fixed points satisfy

-9K

-F 0,
aK 0.

Solving for fixed points gives the 0(1) pairs of fixed points

j Li + 7w? + 8W2 7 + 8ww2 42+.. +

2+ 16 64
0= 7 3r

2'2-"

for w, < 0 and

w 7w? + 8L"2 7 + 8wlw2 f2 +.

2 16 64
0 = Oir

for w, > 0. (Solutions which are 0(1/c) also exist, but we ignore them since
we are interested in the behavior of the trivial solution a neighborhood of
the origin. These fixed points indicate the presence of elliptic periodic orbits
contained in the homoclinic loops of the 0(1) fixed points.)

12
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We now classify the non-trivial fixed points by studying the hamiltonian in

a neighborhood of the fixed points. Below resonance, for the fixed points at
0 = 7r/2 and 0 = 37r/2, the hamiltonian is

K = 'E ((24W2 + 17wE + 24w1)cos 20 - 8u,2c - 19w~c - 8w) J.

Above resonance, for the fixed points 0 = 0 and 0 = ir, the hamiltonian is

K = " (24w 2.E+ 17W1 E-l+ 24w) cos 20+ 8W2 E+ i1PW2C + 8WjJ
1-6 

) J .

Both translated hamiltonians represent saddle points. As w - [ the saddle
points move in toward the origin along the lines cos20 = -1. At O =
the origin is saddle-like. As w increases from 1/2 the saddle points move out

from the origin on the lines cos 20 = 1. Figure 1 shows Poincar4 maps below,
at, and above resonance. The Poincar6 maps were generated by integrating
the second-order equation eq.(16). Figure 2 shows the level curves of the re-
duced hamiltonian (17), plotted on the same scale as the numerically generated
Poincar6 maps.

7 A Bifurcation Between Resonances

Finally, we consider a bifurcation between two O(E) resonances. We will use
O(E) Lie transforms to study how the Poincar6 map changes as the amplitudes
of two perturbations change. The equation to study is

i + (1 + EoJ)X + E(sX2 cos(t) + (1 - s)X3 cos(2t)) = 0

for 0 < s < 1. When s = 0, the quadratic term is absent and the cubic term
is resonant. When s = 1, the quadratic term is resonant and the cubic term is
absent. When 0 < s < 1 both terms are resonant. The interaction of the two

resonances is of interest.
Without loss of generality, set w, = 1. The resulting reduced hamiltonian

is

K, 1j - 2s sin 0 - l j2 cos20 (18)
2 4 34

Fixed points satisfy

OKI 0

3T
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SI

(~) (b)
=0.500798 0.5

.N

(c) 4
w= 0.499199

Figure I
Numerically integrated Poincere maps (Z:t=0 mod 2V)

of equation (16)
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(e) (b)

(c)

Figure 2

Level curves of the reduced O(S ) hamiltonian (17)
constructed by Lie transforms
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which give the fixed points

0 37r
2'

(19)

-- ( --_2 s(3s : JV9s2 + 32s - 32)
8(1-a)

and

sin e =

4(s - 1)17'
(20)

8 - 8s - a2

8(1 -s)2

The requirement that the radicand of eq.(19) be non-negative restricts s to the

interval 0.8138 < s < 1. The requirement that I sin 0_< 1 in eq.(20) restricts s

to 0 < s < 0.828427.
We now classify the stability of the fixed points. The stability of the crit-

ical point is characterized by the sign of the determinant of the Hessian Hh

evaluated at the fixed point. A rather lengthy computation (cf. 111) shows that

det(Hh(xo)) = hqqhpp - (hqp) 2 1O

= hjjhoo - (hj) 2 lo.

The critical point is a saddle if

hjjhoe - (hJe) 2 1o < 0

and is a center if
hjjhoo - (hJi) 2 1o > 0.

For the fixed points satisfying 0 = 3r/2,

(hjjihoo - hjo)Io < 0

gives the stability criterion

... (6(1 - a) 2 j l0v (1 S2))7 + 3s)>

where, from eq.(19), 8(1-a)

. " = 8(1 )(3s V/9s. 2 + 32s - 32).

16j
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Substituting this into the inequality shows, after some algebra, that the limits
of stable s are roots of the polynomial equation

4 440s3 463 S2 8576 4096

21 9 63 63

The roots in the interval for which the fixed points exist are found to be
s = 0.818337 (for the + root) and s = 0.88871 (for the - root). The
stabilities of the fixed poiPts for various s are listed in a table below.

For the other fixed points, the stability criterion is

(1 - S) 2 J 2  (1 - s) 2 J 2 sin 2(20) > 0

2 2

where
1 T(2-JaI

1 - s 8(1 - a)2

and

V /'sinG =
4(s- 1)

Inserting these relations gives the stability criterion

(
S
2 + 4s - 4)(S2 + 8s - 8)

64(1 - S)2

Since these fixed points fixed points exist for 0 < s < 0.828427 and the in-
equality is not satisfied on this interval, these fixed points are always saddles.
The behavior for various s is summarized below:

* Ata =0, saddles exist at V7 = 1,0= Oand VY'= 1,0= 7r.

e As a increases, the saddles move into the left side of the plane and toward
the horizontal axis.

* At s = 0.8138, a center appears at Vr = 2.31718, 0 = 37r/2.

e As s increases, the centers separate, remaining on the horizontal axis.

* At s = 0.818337 the center farthest from the origin on the horizontal axis
becomes a saddle.

* At s = 2V2 - 2 the two saddles and the inner center coalesce and form
a center.

* At s = 0.88871 the inner center becomes a saddle. h
* As s - I the inner saddle moves to VT = V 8/3 and the outer one moves

off to infinity.

Figure 3 shows the transitions for various values of s.

17



(a) (b)
s=O s=0.6

(c) (d) ,.
s=0.815 s=0.82

Figure 3

Level curves of the reduced hamiltonian (18) for indicated
values of s.
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S=0.9
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8 Appendix

The following MACSYMA program computes the lie transform of a weak per-
turbation of the simple harmonic oscillator.

/* Program to compute the lie transform near a resonance.*/
/* If detuning is requested, the program will supply it */
/*in the form dw[iJ*e-i. */
lie) :=block
(

kill(y,dw,n,j ,dotran),
assume(j>O),
maperror: false,
print(timedateo),
trunc:read("Truncation order:"),
om:read("Frequency"),
f:read("Perturbation (use x, e, and t):"),

N, detoon:read("Detune from resonance [y/n] ?"),

if detoon = y then f:f+sum(e-i * dw[i),i,1,trunc)*x,
dotran:read("Compute the co-ordinate

transformation (y/n] ?"),

print("Equation to work with:"),
print('diff(x,t,2) + om-2*x + f = 0),

/* Construct the Hamiltonian in complex *1
/* slow-flow co-ordinates. */

hh:map(pseudo.-int _x,expand(exponentialize(f))),

/* Do the canonical change of co-ordinates to */
/* slow action-angle variables. */

hh:ev(hh,x=.e-(%.i*om*t)*q/(2*%i*om) - '.e"(-%i*om*t)*p),

hh:ev(hh,q=sqrt(2*j*om)*.e-(%i*th),
pzsqrt(2*j*om)/(2.i*om)*.e"(-7.i*th)),

/* Now taylor expand hh to order trunc */
/* and assign h[i] values. */
tmp: expand(taylor(hh, e, 0, trunc)),
for i from 0 thru trunc do

I@( N-"

h~i] : coeff(tmp,e,i)
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/* Initialize the new hamiltonian. */

kEO] : h[O],

/* This loop does the transforms. */

for n from I thru trunc do

print("Loop # ",n, "of ",trunc),
temp: hn] + sum(poisson(w[n-mJ,k[m]), m, 1, n-1)/n,
temp: expand(temp + sum(m*inverse-evolution

(n-m, him]), m, 1, n-1)/n),

/* We don't need w[trunc] unless we are going to */
/* compute the net transformation. */

if (dotran = y or n < trunc) then win]: getw(n,temp),
/* Cheat here. w[n] was chosen to make kin] the */
/* t-independent part of temp. */

k[n]: map(nuke-t,temp)

/* The result is in new action-angle variables. */
/* Tell me what we got. */

print(""),

kk:sum(k[i]*e-i,i,O,trunc),
kk:expand(rat(kk)),

/* Tell me all about the reduced hamiltonian. */

print("The reduced hamiltonian in transformed

action-angle variables:"),
realkk: expand(rat(realpart(kk))),

print(realkk),

/* if requested, compute the co-ordinate transformation. */

if dotran = y then

block

/* use the inverse evolution operator give the relation */

21
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/* between old and new.

physical-j:sum(e-iinverse-.evolution'(i,j) ,i,Otrunc),
physical-th:sum(ei*inverse-evolution(i,th) ,i,O,trunc),

physical.j :expand(realpart(physical.j)),
physical-th: expand (realpart (physical-th)),

/* Now tell me how big the transformation is: *

print("")
print("The co-ordinate transformation has been

computed."),
print("length(physical-j )",length(physical-j)),
print("llength(physical-th)=" ,length(physical-th))

else
print("You told me not to compute the

co-ordinate transformation."),

/* Finished. *

/* Function to look like integration in x. *
/* This function is mapped. *
pseudo-.int-.x(f):

f*x/(hipow(f,x) + 1)

/* function to compute poisson brackets in Cth,j) space. 4b/

poisson(f,g):=

diff(f,th) * diff~g,j) - diff(f,j) * diff~g,th)

/* function to nuke t-independent stuff. *
/* this function is mapped. *

nuke..no..t(f):I
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0
else
f

/* function to nuke t-dependent stuff. *
/* this function is mapped. *
nuke..t(f) :

if freeof(t,f) then
f

else
0

/* Function to compute generating function to *
/* nuke t-dependent terms. This function is not mapped. *
getw(n,f):

Etmpj,
tmp:expand(-n*map(nukeno-.t,f)),
/* Factor the exponents in case an unspecified *
/* omega is given. Note: lambda returns a list. *
tmp:map(lambdaC Eu],scanmap(f actor, Eu])) ,tmp),
tmp:part(tmp,l),
map(innegrate ,tmp)

/* Function to look like integration of complex *
1* exponential, hence the name. *
/* This function is mapped. *
innegrate(f) :

Enn,mm,tmp,z),

matchdeclare(Enn~mmJ ,freeof t)),

/* Define the pattern-matching rules for sines *
/* and cosines. Note that the rules do not commute,*/
/* and ins must be performed before inc. *

defrule(ins, csnnn+rnm*t) ,sin(nn+mm*)/mm),

defrule~ins, cs(nn+mm*t) ,-co(nn~m*z)/mm),
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tmp :expand(demoivre(f)),
tmp :expand(applybI (tmp,ins)),
tmp:applybi(map(nukeno_t,tmp),inc)+map(nuket,tmp),
tmp:ev(tmp,zt),
tmp: expand (exponentialize (tmp))

/* Recursive function to compute kth term of */
/* inverse of evolution operator acting on h. */
inverse-evolution(k,h) . =
C
if k - 0 then h
else
sum(poisson(vgk-m],inverseevolution(m,h)), m, 0, k-1)/k

/* Recursive function to compute kth term of evolution */
/* operator acting on h. Note that this function is not */
/* used by the program. */
evolution(k,h) :
(
if k a 0 then h
else
-sum(evolution(m,poisson(w[k-m ,h)) ,m,O,k-l)/k

The following examples were run with the MACSYMA option "SHOW-
TIME:ALL" on a VAX 8500.

(c4) lieO$
Wed Jun 10 15:59:17 1987

Truncation order:
1;
Frequency
1/2;
Perturbation (use x, e, and t):
e*x-3*cos(t);
Detune from resonance Cy/nJ ?

Y;
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Compute the co-ordinate transformation Ey/n] ?
Y;

Equation to work with:

2
dx 3 x
--- + e cos(t) x + dw e x + - 0

2 1 4
dt

Loop# of 1

The reduced hamiltonian in transformed action-angle

variables:

2
dw e j - e j cos(2 th)

I

The co-ordinate transformation has been computed.

length(physicalj)= 5

length(physicalth)= 6

Totaltime= 52500 msec. GCtime= 20116 msec.

Next, a run with a symbolic frequency to show how the resonant frequencies
may be computed:

(c7) lieO$
Wed Jun 10 16:01:32 1987

Truncation order:
1;
Frequency

omega;

Perturbation (use x, e, and t):
e*x-3*cos(t);

Detune from resonance [y/n] ?
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Compute the co-ordinate transformation Ey/n] ?

Equation to work with:

2
d x 3 2
--+ e cos(t) x + omega x 0

2

dt

Loop # 1 of 1

The reduced hamiltonian in transformed action-angle

variables:

0

The co-ordinate transformation has been computed.

length(physical-j)= 5

length(physical-.th)= 6

Totaltime= 72200 msec. GCtime= 26500 msec.

(c8) factor(denom(rat(ev(w~lJ ,t0O)))); ,

Totaltime= 3250 msec. GCtime= 1266 msec.

2
(d8) 32 omega (2 omega- 1) (2 omega + 1)

(4 omega - 1) (4 omega + 1)

The poles of the generating function at 0(E) are w =1/2 and =1/4.
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Abstract

An interactive system, referred to as MECXPERT (Mechanism Expert), has been

designed with the expressed purpose of assisting nonexpert design engineers in
creating mechanisms for fulfilling specific motion-conversion and/or power-
transmission requirements. The particular knowledge representation chosen for this

application comprises a hybrid formulation of a rule-based production system with a
frame-based approach. The underlying control strategy is based on a series of

special-purpose, domain-specific operators whose function is to move from one
problem space to another through various stages or "states" that comprise the

mechanism design process.

The primary focus of this paper centers on the representation of knowledge and
its control within an expert system for creative mechanism design. An overview

summarizing the reasons for developing such an expert system is provided, and the
formulation of a problem is discussed through an example taken from the design of a

variable-stroke internal-combustion engine.

Introduction

The need for better and more nearly optimal and systematically designed

mechanical devices in today's competitive world economy necessitates the

development of expert systems. Capturing an expert's knowledge and heuristic skills

in the performance of a domain specific task are the goals of an expert system.

Such a system should assist less experienced engineers in producing better designs

Note: Bold, italicized works appear in the glossary in alphabetical order.
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in a timely manner. Towards that end, an expert system for the creative design of

mechanisms has been developed.

This paper discusses the manner in which knowledge is represented, manipulated

and controlled in a mechanism design expert system, an important first step in the

overall development of the system. Expandability, generality, system longevity and

efficiency in expended effort were subjects of prime concern in developing the

knowledge representation, with an eye toward long term committment to system

improvement.

Historically there have been three approaches to the conceptual design of

mechanisms: (1) the experience of a designer and/or layout draftsman, (2) the use

of atlases or compendia of mechanisms, still the most widely used approach, and (3)

the investigation of the kinematic structure of mechanisms. The second approach has

been developed, most notably, by Jones et al. [1] and Artoboleskii [2] and makes for

interesting and informative reading. The development of the third approach is more

elusive, but holds remarkable promise for this most difficult phase of mechanical

design, because of its systematic and unbiased nature. The expert system currently

under development utilizes the later methodology as a basis for problem formulation

and model development coupled with a heuristic approach for determining structure-

function relationships for mechanisms as a basis for what we refer to as experience-

based mechanism design.

Few studies have made progress of any significance in developing expert systems

for mechanism design. The work of Kota, Erdman and Riley [3,4], stands out as the

most notable for applying expert system techniques to the design of dwell

mechanisms. The authors reported on progress achieved on their system with an eye
toward future development of a more general system whose purpose is to design

mechanisms capable of generating straight lines, circular arcs, symmetric curves

and parallel motion, in addition to dwell.
The overall process of creative mechanism design can be separated into a number

of steps, some possessing considerable levels of difficulty and requiring significant

long term mechanism design experience and intuition. These steps are depicted in

the form of a flow chart in Figure 1. The creative design, i.e type and

dimensional synthesis, of mechanisms is a complex task requiring deep domain

knowledge as compared with the knowledge required to generate routine designs for

fulfilling relatively simple or previously determined motion conversion

requirements or to redesign, through minor modifications, existing workable

30

*. % NiN.. -

%% %



User Interfac Mchasism design
Dout (Ntua language prcso) Mb.ng.agw tW Md

ciamoioatian of
des requa wment.:
L Function

Easypasasratim.
z.~~ body

Very expertZAOR uyste"Omw .

D i f f c u l tM a c a n i m n . y n t h si sM a c h i n e l e a r n n g

Easy (RAI"Mgoritbmilo graph
F~tmkoonnenumeramatri

methods (duae graph)
I lsomorpblum ohacklng

Mafult (M338 AnalysiADAMS% DR"M DADS
Padia nayi packages

and aftnbol72o 83 = =m

dynainlo equations.

No

(KUM - OPTOR)
Quite ~ Decision making table in

DiEfoult for Itertive redesign
and iesecig

dimensiona' synthesis bf~

Figur L. Overview of an expert system for oreative meschanism design.

31



designs. 

While the generation of numerical solutions corresponding to both the kinematics 

and dynamics of a known mecPianism, as well as its animation represent relatively 

straightforward processes, creative mechanism design, in contrast, is extremely 

complex requiring, we believe, more of a heuristic approach particularly during tFie 

more conceptual phases of the mechanism design process. 

The major obstacle to overcome in creative mechanism design centers around the 

determination of mechanism topologies (structures) for the fulfillment of specific 

design requirements, i.e. establishing a finite definable mapping between specified 

design requirements (functionality) and mechanism structure(s) capable of fulfilling 

the design requirements. Such a mapping will, in most cases, be one-to-many. Our 

work in this area centers around (i) the use of statistical machine learning for the 

cognitive recognition of characteristic motion patterns (functionality) associated 

with specific classes of mechanisms and the correlation of functionality (function 

generation, path generation, rigid body guidance) with structural features (links, 

joints and the manner in which they are connected) embodied in the mechanisms and 

(2) the development of a general vocabulary and "language" hierarchically structured 

consistent with the terminology of functional requirements and structural 

characteristics, through which a mechanism designer can establish a bi-directional 

channel of communication with the system in order to convey his functional 

requirements and receive feedback in a manner that is natural to mechanism design. 

This approach can be looked upon as a heuristic extension of the concept of the 

separation of kinematic structure and function conceived by Freudenstein [5]. 

Developing an Expert System for Mechanism Design 

It is our contention that an expert system for mechanism design should act as an 

intelligent assistant and mentor, guiding the design engineer during the creative 

process of mechanism synthesis. Furthermore, the primary purpose of the system 

should be to fulfill user-specified predetermined motion-conversion or power- 

transmission requirements through the creation of an intelligent interactive 

environment with the mechanism design engineer. 

With this idea in mind, the system under development has been fashioned around 

the concept of the separation of kinematic structure and function. Figure 2A depicts 

the essence of this subtle but important concept by means of an example. The 

functional requirements of the spatial slider crank mechanism (converts rotary 

motion    into    out^of-plane    reciprocating    motion)     are    prcvid.ed    as    input-output 
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FUNCTION

Function generation
Rotary input - Reciprocating output

STRUCTURE

Four links, four joints, input joint is R type,
output joint is P type, one degree of freedom
mechanism design.

MECHANISM R. revolute joint.

C: cylindrical joint
Reciprocating S: spherical joint.

output P: prismatic joint

s R

C Rotary
input

Figure 2a. Separation of kinematic structure from
function in a spatial slider-crank mechanism.

GRAPH and ADJACENCY MATRIX

c
0 R 0 P

R is R 0 C 0

IP 0 C 0 S

P 0 S 0O

Figure 2b. Graph representation of the spatial
slider-crank mechanism.
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(functional) specifications by the user while the structural characteristics, i.e. those

characteristics which will fulfill the functional requirements, are manifested in the

actual physical embodiment of the mechanism, that is the number and type of links

and joints and the manner in which they are interconnected.

The expert system system has been logically and hierarchically segmented into

the following four subcomponents:

I .Specification of the desired kinematic structural characteristics and functional
requirements.

2.Determination of the kinematic structure of all potentialLy useful mechanisms
based on (1) the information provided in step i and2) statistical machine
learning for the cognitive matching of known kinematic topologies with the
functional requirements the topologies are known to fulfill.

3.Screening of mechanisms according to their ability to fulfill both the
functional and structural constraints.

4.Selection of the most favorable mechanism, i.e. the one(s) most nearly

satisfying the constraints, for further development (analysis and animation).

As demonstrated by Dobrjanskyj and Freudenstein et al. [6] and Crossley [71, the

kinematic structure of a mechanism can be conveniently, compactly and precisely

represented, mathematically, using linear graph theory. Enumeration of the

structure of mechanisms coupled with subsequent isomorphism checking for the

elimination of duplicate mechanism structures using link connectivity matrices

provides an efficient computational scheme for representing and sorting the

kinematic structure of candidate mechanisms. Figure 2B depicts the graph

representation and corresponding link connectivity matrix for a spatial slider crank

mechanism. As previously mentioned, the correlation of kinematic structure(s) with

predefined functional requirements, for large classes of mechanisms, represents the

primary bottleneck to creative mechanism design and is the area in which much work

remains to be done.

Remaining within the bounds of a limited domain is the natural and most logical

course of action to be adopted in any new expert system development endeavor,

particularly in a domain as complex as mechanism design. As a result of this, the

time tested incremental approach to software design has been utilized [81. In this

approach a top-down building-block strategy is employed whereby modular pieces of

the system are configured, keeping the overall system configuration in mind to avoid

costly redevelopment, and incrementally tested to insure correct results. The

system is presently limited to planar mechanisms having kinematic pairs with a
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maximum of two degrees-of-freedom.

Finally, in designing a system for general applicability it is imperative that a

test problem be selected that reflects the complexity of the domain (mechanism

design) without including excessive detail or problem size which would unnecessarily

and unavoidably complicate program verification and performance evaluation. For

this reason a test problem fashioned around the design of a variable-stroke internal-

combustion engine, which has been previously solved in detail by Freudenstein and

Maki [9], has been selected. The designer's reasoning processes in making problem

specific design decisions have been explicitly verbalized in their paper.

Software Implementation Issues

In its present state, the MECXPERT system has been implemented using the OPS5

production system programming language [10] embedded within the Knowledge Craft

expert system development environment [11]. Programs developed in the OPS5

language are composed of data-sensitive unordered rules, where the data can be (1)

instances of physical objects, (2) facts related to the domain of application and (3)

conceptual objects (such as goals) related to the problem-solving strategy. The rules

that constitute the program are composed of two parts. The first is the condition

part and consists of data elements. The second part of a rule is the action part and is

composed of instructions that change the current data configuration.

I Program execution occurs in "cycles" in which each cycle consists of three .

actions: match rules, select matching rules and execute selected rule. A rule can be '..

executed only if all the data elements in its condition part match the current data y

configuration. OPS5 provides two possible strategies, lexicographic ordering (LEX)

and means-ends-analysis (MEA) for selecting the rule to be fired when more than one

rule is applicable. In this case the MEA conflict resolution strategy was selected

because it places additional emphasis on the recency of the working memory element

that matches the first condition element of a rule. In this way, when the first

condition element of a rule is a goal element, the system will not be distracted by a

very recent working element that is not a goal (i.e. goal driven). Thus the data

configuration changes after every cycle is completed, except the final one. For this

reason the system can be said to use a data-driven inference strategy.

In this system, a goal-driven inference strategy is inappropriate due to the fact

that in the process of mechanism synthesis, the final mechanism topologies suitable

for prescribed motion conversion or power transmission are not known apriori, but

are to be uncovered through the interactive design process embedded within the expert 7"
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system.

The structure of the software has been developed in accordance with the

requirements specified by the domain by developing data structures that insure the

creation of a planning strategy capable of simulating mechanism design procedures

and emulating human thought processes which occur during mechanism design as

these would be performed within these procedures. The procedures use various types

of knowledge to implement appropriate reasoning schemes. It is therefore of

extreme importance to effectively represent knowledge and simulate planning, since

these two functions determine the path that the design undergoes and whether or not

all facets of the design process are properly taken into account.

Building a Model for Knowledge-Based Mechanism Design

In order to develop a formal description, i.e. model, of the mechanism synthesis

problem it is necessary to:

I.Define a state space representation containing all the possible configurations of the

relevant parts of the problem, without necessarily enumerating, in detail, all

these states. In fact in mechanism design this represents an impractical task due

to the NP-completeness nature of the problem, i.e. exponential time complexity

growth rate. For example, the graphs corresponding to a planar six bar

mechanism represent an upper limit of 0(10) unique kinematic structures, while

those for a planar eight bar mechanism represent an upper limit of 0(10 ) unique

kinematic structures. This later number of possible mechanism structures is too

large to undergo detailed development or in-depth evaluation given the present

level of readily available engineering computing power. This presupposes that the

problem is decomposable. We have found that it is.

2.Specify one or more states within the space representing possible situations from
which the problem-solving process may start. These are the initial states.

3.Specify a set of rules describing the operations which permit movement through the

space from its initial state to its goal state.

4.Specify acceptable solution or goal states to the problem. In mechanism design

information of this nature would be provided to the system via user input in the

form of (1) an input-output function to be generated, (2) a description of position
and orientation of a rigid body to be guided, (3) a path to be generated through a
finite number of points by a point on the coupler link of the mechanism or (4) as a

power transmission or energy conversion requirement.
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Each of the above listed parts of an overall system model, as they specifically

relate to mechanism design, are discussed in the following sections.

Data Structures

Appropriately designed data structures are the means by which planning and

knowledge representation can be effectively implemented in an expert system. The

problem domain, in this case mechanism design, is represented or broken down,

hierarchically, into problem-spaces (PS}. These {PS}'s represent states that the

system can reside in and pass through in its effort to achieve its goal. Thus, the

system can be imagined to emulate the mechanism designer's thought processes,

where the current {FS} represents the issue or concept under consideration. After

reaching a given state the system must choose the next state to which it will move.

To achieve this a data structure element, referred to as a sub-problem (SP), has been

created to indicate to the current {PS} what the next available states, i.e. {PS}'s,

will be. Therefore, within each {PS} there are {SP}'s which represent potential

compatible {PS}'s to which the system can move. It should be emphasized that the

term sub-problem is a relative one in the sense that its describes the next possible

problem-space, {PS}, to which the system may move from the current problem-

space, {PS}, thereby establishing a parent-child relationship between the two.

Operators, {OP}, whose function is to decide what the next {PS} is to be, based on

the current status of the design, are present within all {PS}'s. A data structure,

referred to as "compatibility', defines the compatible {PS}'s and {SP}'s and is

created each time the system is initialized. In essence this data structure

establishes the fixed (common for different design goals) graphical tree structure

[12] that represents the domain of mechanism design (Figure 4), to the extent that it

is represented in this model. This structural representation is possible since the

design domain can be hierarchically subdivided.

The hierarchical nature of the mechanism design domain has be schematically

illustrated in Figure 3. Details have been intentionally omitted at this point

in the discussion in order to avoid confusion, however following sections will

elaborate the details of the system structure specific to mechanism design. When

the current (PS} is "I", the available {SP}'s will be "2", "3" and "4". If {SP} "3" is

selected then the current {PS} becomes "3" and the subsequent {SP}'s are "7" and "8".

Four different defining characteristics can be associated with each problem space. A

{PS} is said to be "complex" when in order to be solved it has to be broken down into

other {PS}'s (e.g. {PS}'s "1", "3", "4" and "9"). A {PS} is said to be "simple" when in

order to be solved only a few predetermined steps (actions) are necessary (e.g.
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{PS}'s "2", "7", "8", "10", "15", and "16"). Note that in Figure 3, circles are used to

schematically represent steps rooted in simple {PS}'s. Therefore, a {PS} can be
solved either by successfully executing a predefined number of steps (actions) such
as eliminate prismatic (p-type) joints or increase the current number of independent
loops, Lind, by one, or by solving all the required {SP}'s (defined within each {PSI

by an operator whose role is to evaluate the state of the current {PS}) that are rooted
in the current {PS}. When a {PS} is successfully achieved, then its status is said to
have been "achieved'. When a {PS} has not been successfully achieved, because its

rooted {SP}'s and/or steps are still being processed, its status is said to be
"pending", otherwise its status is said to be "failed' (within each {PS} there is
knowledge that is used by an operator, called the evaluate-state operator, to

determine the status of the {PS}).

A {PS} is said to be "fixed' when the choice of {SP}'s is independent of the
current design assignment specified by C-e user, and thus knowledge can be given to
the system to reject all but a single {SP}. Finally, a {PS} is said to be

"probabilistic" when the selection of a {SP} depends on its probability of success.

The probabilistic {SP}'s are independent of one another and each carries a weighting
factor that depends on problem specifications which are defined by the user during the

"problem definition" (entry of input data) phase of mechanism design.

In Figures 3 and 4 probabilistic problem-spaces are denoted by rooted JSP}'s
which are interconnected with their respective parent (PS}'s by dotted lines and fixed
problem spaces are denoted by rooted {SPI's that are interconnected with their

respective parent {PS}'s by solid lines.

Making reference to Figure 3 it can be seen that when the current {PS} is "1", and
if and only if (PS} "I" is fixed, then the following knowledge can be built (hard
coded) into the system: If the status of all {SP}'s directly beneath (PS} "I" are

pending then reject all {SP}'s except "2". If the status of "2" is achieved and the
status of the remaining {SP}'s on the same level are pending, then select "4" by
rejecting the other pending {SP}'s on this level, etc. This process of rejecting

{SP}'s is realized through the use of a "reject" operator that is active in every {PS}.
In the first case of the above example, the "reject" operator would reject (SP}'s "3"
and "4" and in the second case it would reject {SP} "3". Each time control returns to
a {PS} from a lower level {SP} (either because it has been achieved or failed) the
status of {SP}'s corresponding to the current (PS} that have not been failed or

achieved are set from "rejected" to "pending" so that they will be available when I-
appropriate and necessary.
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The primary function of the data structures described above is the computer

implementation of a systematic methodology for mechanism design. The

effectiveness of the expert system depends, to a large extent, on the manner in which

explicit knowledge about the process of mechanism design can be built into the data

structure.

Knowledg~e Representation Strategy

The corpus of knowledge contained within the expert system is discretized and

partitioned into problem spaces, {PS})'s, through the use of operators, {OP}'s,

possessing certain predefined knowledge roles. These operators are the means

through which a planning strategy has been imparted to the system. The operators

and their associated functions have been created as the means through which

traversal, from one problem space to another, can systematically and consistently

proceed within the system. Within each {PS} the operators and their associated

knowledge roles are defined as follows (Figure 5).

Operator Definitions:

i. Propose operator:

All {SP}'s applicable to the current problem-space, {PS}, have their status set to
"pending". The status of these {SP}'s are determined by the propose operator
whose function is to check all the (PS}'s for potentially compatible {SP}'s.

2. Evaluate constraints operator:

In this stage only {PS}'s that are probabilistic exist. Under this operator the
expert places knowledge that checks the user's input and the current status of the
design. It assigns the appropriate weighting Factors, (wt), indicative of the
contribution that each of the constraints should make to the rooted {SP}'s.

3. Assign probability of success operator:

A probability of success, p(s), is assigned to each of the {SP}'s by averaging the
weighting factors that have been determined under the evaluate constraints
operator.

4. Evaluate state operator:

When the current step of the data structure is "evaluate state", the system will
attempt to match the current configuration of the data with condition elements '.
that if present in working memory, would indicate failure or success of the
current {PS}. If such a matching occurs then control, unless otherwise specified
by the "failure handler", returns to the parent {PS}.

5. Reject operator:

{SP}'s that have been proposed by the propose operator but which are forbidden
due to the presence of an appropriate piece of knowledge are rejected by this
operator. This operator is used in fixed {PS}'s to reject all but one {SP}.
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6. Choose operator:

In probabilistic {PS}'s the (SP) with the highest probability of success (i.e. >
cutoff value) is chosen. This is true for the eliminate-joints {PS} where more
than one {SP} might have a weighting factor > cutoff value and thus more than one
{SP} can be selected (more than one joint type rejected). In other probabilistic
{PS}'s such as 'get Lind-min" only one {SP} must be selected. Therefore, after the

one {SP} with the highest weighting factor is selected, applied and achieved, the
evaluate-state operator should set the current {FPS} to an achieved status, and
control will then return to {PS} get-graph. In this example, what was described
happens because when a {SP} is achieved the operator under control is evaluate-
state. In fixed {PS}'s, the single {SP} with a pending status will be selected.

7. Apply operator:
The chosen {SP} is applied by the apply operator. If it is complex then the {SP}
becomes the current {PS}, otherwise the predefined steps of the appropriate :2
simple {PS) are executed.

Figure 5 depicts the relationship of these operators within the ith problem space.

Attributes that are descriptive of the structure and function of mechanisms such
as the number and types of links and joints, degrees-of-freedom, number of

independent loops, etc., and knowledge that describes these quan'tities is represented

in the form of hierarchical frames [13]. Frames make it possible to readily
represent objects hierarchically and to simplify their communication control

structure. The following is a frame-based knowledge representation of an atlas of
graphs, written in the OPS5 language, corresponding to the structure of

mechanisms. These representations can change and expand as the system grows.

(ATLAS ^graph-id <a> ; This is an atlas of graphs
; each of which has a unique

^degree-of-freedom <b> ; id number <a> and a dof <b>
associated with it.

(GRAPH ^id <a> ; Each graph has structural
variables associated with it.

^#-of-independent-!oops <b> ; Number of independent loops.

^ground-link <d> ; Indicates which link is grounded.

^input-link <e> ; Indicates which link is the input link.
*output-link <f> ; Indicates which link is the output link.
^#-of-P-joints <p> ; Number of prismatic joints.

^#-of-R-joints <r> ; Number of revolute joints.

^#-of-G-joints <g> ; Number of gear joints.

status <n>) ; Can be pending, selected or rejected.
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(ADJACENCY-MATRIX ; Each graph, <a>, has an adjacency
; matrix, <array-id>, associated with it.

^graph-id '(a>

Amatrix <array-id>)

(MECHANISM ; The values of a mechanisms attributes,
; given below, represent the current design
; status. These values are used to determine

the graphs to be enumerated and
; evaluated.

^dof 'a> ; F is specified by the user-input to the
; question, # of inputs and # of outputs.

^Lind <b> ) ; This is defined by the knowledge found in
; "get current Lind" (Figure 2).

(JOINTS type <a> ; Any of type R, P or G.

max-# <b> ; A problem-space must be created at
; the appropriate level which determines
; the maximum number of <a> joints to
; be used within any loop.

max-#2 <c> ; Again, a {PS} must be created that will
; have knowledge of the maximum number
; of <a> joints to be used in the current
; mechanism design.

status <d> ; Either rejected or pending, which is
; determined in the eliminate-type of
; joints problem space.

wt <e> ) ; The weighting value assigned to the {SP)
in the eliminate-type of joints problem-

space. To be used later (in case status is
pending) to help evaluate the graphs that

; use joint <a>.

Note that letters in triangular brackets represent the values of variables
associated with the structure of mechanisms. This data structure stores knowledge
about a complex element (in this case mechanism structure) in a hierarchical format

and communicates it through the use of an identification (id) number.

In addition to hierarchical frames, production rules serve as a second method of
representing knowledge, a description of which has been provided under the section

of this paper entitled Software Implementation Issues.

Systematic PlaminM for the Control of Knowledge

The strategy used to control knowledge is systematic in the sense that it
guarantees the generation of a solution if one exists while avoiding the possibility of
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repetituous computations or enumerations of mechanism structures [14] for

efficiency.

The planning strategy incorporated within the system has been designed to address

the following issues:

How is the next problem-space {PS} chosen when:

1. The current {PS} has to be broken down into {SP}'s in order to be solved.

2. The current {PS} has been solved successfully.

3. The current {PS} cannot be solved (i.e., is assigned a failed status).

4. A solution to the current (PSI is not acceptable at other levels of the knowledge
representation hierarchy.

The first question refers to the concept of a complex {PS}. If, in addition to being

complex, the current {PS} happens to be fixed then as already mentioned there must

be predefined knowledge resident in the system to indicate what the next allowable

{PS) will be (i.e., a predefined course of action). User specified input is assigned

(1) weighting values over the range of values of 0 through I in decimal increments

corresponding to their relative importance and (2) "degree of compatibility" values

corresponding to how compatible they are considered to be with a given {PS) or {SP}.

If the current (PS) happens to be probabilistic, in addition to being complex, then

selection of the next (PS} will depend on weighting factors associated with (carried
by) the next level of (SP}'s. The overall probability of success of a given {SP}

depends on (I) the values of weighting factors assigned by the user for input that is

compatible with the {SP}, (2) the number of inputs that are compatible with the

{SP}, (3) the degree of compatibility of the {SP} with the current {PS), and (4) the

probability of success, p(s), of the {SP} in the current (PSI (the last two

compatibilities are defined by a domain expert). The possibility of dependence of a

{SP} choice on the successes or failures of previous {SP}'s and/or {PS}'s is also

taken into consideration. It can be seen that inputs provided by the user, representing

specifications that must be satisfied up to a desired predefined degree of

compatibility, are used to appropriately constrain or trace the path taken by the

design process.

.h alowing example demonstrates, in a simplified manner, how constraint

propagation has been implemented. Referring to Figure 3, {PS} "4" is defined to be *,

probabilistic. Inputs "a", "b", and "c" are defined to be compatible with {SP} "9", and :/.

inputs "a", "c", and "d" are defined to be compatible with {SP} "10". Furthermore, it
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is assumed that the domain expert has assigned the following degree-of-
compatibility values for inputs a, b and c with respect to {PS} "9": doca/ 9 = .7,

docb/ 9 = .8, doce/ 9 = .9, and for inputs a, b and d with respect to (PS} "10":
do a/1 8, do = .7 and docd/ = .9. It is also assumed that the user has
entered the following weighting factors for the inputs:

wt a : 0.8, wtb: 0.6, wtc: 0.3, and wtd: 0.9

Based on the above degree of compatibility values and weighting factor values, the
weighting factors for {SP}'s "9" and "10" will be respectively:

{SP} "9" : ((0.7 * 0.8) + (0.8 * 0.6) + (0.9 * 0.3)) / 3 =.4367

{SP} "10": ((0.8 * 0.8) + (0.7 * 0.6) + (0.9 * 0.9)) / 3 = .6233

Thus, in this case {SP} "10" would have been selected if there was no knowledge
under step "8" (Figure 3) that would forbid the selection of {SP} "10". Note also that
a "cutoff value" has been established for each probabilistic (PSI. In order for a (SP)
to be selected it must acquire a composite weighting factor value that is higher than
the cutoff value assigned to the current (PS}.

Finally, if the (PS) selected is simple and if it has been achieved then control
returns to the parent {PS}. In the event of failure, if recovery is possible the failure
handler will take over, otherwise control is returned to the parent (PS} and the failed
{PS} will be assigned a "failed" status. As was previously discussed, in every (PSI

there is knowledge about whether the (PS) has been achieved, failed or pending
embedded within internal {SP}'s. The failure handler will only take over when the
failure occurs at a simple (PS}. This is because only then is it possible to precisely
recommend a specific plan of action for recovery. The failure handler, when
activated, keeps track of the {PS) where failure has occured and when its role is
completed. In this way, the design process will be able to resume at the point that it
stopped. The failure handler, when activated, will go to the (PS) that is
recommended within the simple {SP} where the failure has occured and a "parallel"
process will take place until the design is re-established at a desired status. The
control will then return to the failed simple (PS).
Defining a Mechanism Design Problem Within MECXPERT (Problem Definition Phase)

The system, as previously discussed, is broadly based on the concept of the
separation of kinematic structure from function. System functions have been
subdivided into three major phases including (i) problem definition, (2) type
synthesis, and (3) dimensional synthesis. Also included are utility modules for
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automatic sketching with animation and kinematic and dynamic analyses (Figure 1).

These utilities provide feedback to the system and designer as to the applicability of

the heuristically chosen mechanism. If necessary an iterative design procedure can

be instantiated or an alternative design may be chosen by making appropriate changes

to the specified design specifications and constraints to be satisfied.

The system must first acquire knowledge about the problem through a knowledge

acquisition facility. In this stage of operation the system attempts to acquire as

much information as possible from the user so that the design can be constrained and

the domain pruned. The only required information is the number of inputs and the

number of outputs. However, from a practical standpoint additional information

must be specified in order to narrow the number of alternative or candidate

mechanisms to be further studied. The additional information is acquired by the

system in a hierarchical manner so that only relevant questions need be asked.

Most questions require that a weighting factor be specified in the integer range of

zero to one, in decimal increments, corresponding to a certainty factor. If the term

"explain" is entered at any time during a user session, instead of the required

answer, a help facility will provide a detailed explanation of the current question.

At this stage the system will attempt to narrow down the mechanism design

search space (domain) as much as possible by identifying design goals that can be

approached in a more specific way. This is necessary since the number of potential

mechanisms for different design specifications obtained from the heuristic rules

employed, for a general design case, would most likely be unreasonably large. This

inefficiency is a result of the lack of knowledge about how the different specific

domains and sub-domains (represented as {PS}'s in Figure 2) that constitute the

general design domain relate to general concepts and of course computer-based

limitations (memory and speed).

The following is a list of representative system querys requiring user input:

1. Enter the # of inputs.

2. Enter the # of outputs.

3. Enter the type of mechanism.

4. Enter the name of the function to be generated (ex. straight line motion).

5. (Questions that will specify the task of each output):
a.Order of the path traced by each of the outputs.
b.Output link(s) must be connected to a rismatic joint (wt. 0-> 1).
c.Which outputs must be grounded (wt. ->i).

6. Which input(s) must be grounded (wt. 0-> 1).
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7. Which input(s) must be sliders (wt. 0->i).

8. Will there be a control or guidance function within the mechanism (wt. 0-> 1).

9. Enter the maximum number of links, Imax*

10. Enter the minimum number of independent loops, Lindmin .

11. Low cost design (wt. 0-> 1).

12. Reliable design (wt. 0-> 1).

13. Ease of manufacturability (wt. 0-> 1).

14. Speed of mechanism (wt. 0-> 1).

15. Load (wt. 0-> I).

These inputs will be used to constrain the design domain by means of the constraint

propagation method described earlier.

The following is a partial listing of the rules that will be used by the "evaluate-

constraints" operator within the "graph-evaluation" problem space (Figure 4):

Rule-1. If the mechanism is a path generator then the output link must be a floating
link.

Rule-2. If the mechanism is a function generator then the output link must be in
contact with ground.

Rule-3. If there are more than two slider joints in any single loop then the topology
is invalid.

Rule-4. If there is a need for a guidance or control loop then the output link should
not belong to the loop that contains the input. This implies the need for
Lind,min - 2.

Rule-5. The total number of independent loops cannot be less than (the required
number of links which are adjacent with the ground link) - 1.

Rule-6. For the purpose of simplifying the analysis phase of mechanism design,
mechanisms containing at least one independent loop enclosed by {3 + (total
number of dof's)} links should be selected for evaluation prior to those
mechanisms which do not satisfy this rule.

These rules will assist in the process of pinning down the kinematic structural

parameters during execution of the "get-graph" {PS}. Also, user input related to

load, speed, noise level, cost, reliability and manufacturability considerations are

used by the "eliminate-joint-types" {PS}, Figure 4, to reject or assign preferences

for the different available joint-types.

When the problem definition (data input) phase has been completed the planning

strategy imbedded within the MECXPERT system chooses the next design phase,

either type synthesis or dimensional synthesis.
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Type Spythesis Phase of Mechanism Design within MECXPERT

At this level two independent problem-spaces, {PS}'s, are available:

i. Modification of an existing design (Iterative Redesign):

This level assumes the existence of a known mechanism topology in order to fulfill

the user specified design requirements. An iterative redesign procedure is initiated

where changes can be made to structural characteristics (link lengths) of a known

mechanism in order to move the existing design closer to the required design in an

incremental fashion. After each change is made to the mechanism, animation and, if
desired, dynamic analysis, are performed in order to assess the effect of the

changes on nearing the desired mechanism functional requirements.

2. Systematic type synthesis:

In this problem space, {PS}, the system will first compute the number of links

and joints for the simplest possible mechanism, i.e the one having the minimum

allowable value for Lind. This is because the goal is to satisfy the functional

requirements in the simplest way possible. It will then choose the appropriate non-

isomorphic graphs of kinematic chains from an atlas stored in the database.

Finally, all possible combinations for the ground link, the inputs and outputs and the

types of joints will be systematically enumerated from the non-isomorphic graphs.

After this, as shown in Figure 4, the next step will be "graph-evaluation". Heuristics

will be used to assign a weighting factor to each of the graphs. Graphs with
weighting factors greater than 0.5 (arbitrarily chosen, but tuning of this parameter

may be required) will have a chance to continue on into the analysis phase, where the

graphs will be examined in accordance with their priority as indicated by the
weighting factors.

Dimersional Synthesis Phase of Mechanism Design within MECXPERT

The dimensional synthesis phase of MECXPERT has been subdivided into two

problem-spaces, {PS}'s:

1. Automatic Sketching:

The graph representation r'estrains the link connectivity in mechanism design.

However, a mechanism has to be uniquely defined not only by its link connectivity but

also by its physical dimensions. The technique which applies default link lengths and
orientations to the graph-to-mechanism conversion problem is usually referred to as

the automatic sketching of mechanisms. In addition to the default dimensions, link

lengths and orientations, default constraints associated with mechanism geometry
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must also be specified. This includes (1) arbitrarily assigning a joint position to be

coincident with the origin of the selected coordinate system and (2) arbitrarily

assigning a horizontal link (this is usually the gound link). In accordance with the the

number of degrees-of-freedom possessed by the mechansism, additional constraints

must be specified, equal to the number of degree-of-freedom. These additional ,

constraints are referred to as pseudo-constraints, and they determine the initial

position of the mechanism. In order to satisfy all the constraints for automatic

mechanism sketching, a Newton-Raphson iteration scheme has been adopted.

2. Mechanism Animation and Automatic Kinematic Analysis:

The concept of the loop closure equation, referred to as the Freudenstein

equation, can be expanded for solving the kinematics of multiple loop mechanisms.

As a result, by applying this new equation solving strategy, a computationally

efficient divide and conquer algorithm has been developed to generate closed form

solutions for 97% of all planar eight-link planar mechanisms and 56% of all ten-link

mechanisms requiring only seconds of cpu time. This approach can greatly expedite

the analysis phase of mechanism design. The remaining cases can be solved using

traditional numerically-based techniques such as the Newton-Raphson method.

Demonstrative Example of Plannirg Operations within MECXPERT

Aspects of the MECXPERT system, related primarily to knowledge

representation and planning, have been discussed in detail, while touching briefly on

issues related to heuristically-based systematic type and dimensional synthesis and

data input. Two {PS}'s will now be examined within the context of a specific

problem in order to demonstrate how planning is actually carried out in the system.

Freudenstein and Maki [7], employed the method of separation of kinematic

structure and function to develop a variable-stroke slider crank mechanism for the

design of a new internal-combustion engine. The problem presented in their paper

will be used to demonstrate the sequence of planning operations which can occur
within the "Design" and "eliminate-type of joints" -PS}'s (Figure 6).

When the current {PS} becomes "Design", the system checks to determine whether

L the current {PSI is fixed or probabilistic. This, along with other information, is

stored in the compatibilityl data structures that are created prior to the time the

system enters the "start" {PS} phase, i.e. when the system is initialized. Next, the

system checks the contents of the compatibilityl ,-ecords (in the current {PS}, i.e

the "Design" {PS}, there are three of them, (1) Problem definition, (2) Problem
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relaxation and (3) type synthesis) in order to propose compatible {SP}'s.

There are two types of compatibility elements shown below. Compatibilityl
indicates compatible {SP}'s within a {PS} whether the {PS} is fixed or probabilistic
and whether the {SP} is simple or complex. Compatibility2 is only used in
probabilistic {PS}'s to indicate which constraints (associated with user input) are
compatible with which {SP}'s in the current {PS}, the weighting value of that
compatibility (assigned by rules based on the experts knowledge and user's input) and
a cutoff value that indicates the minimum composite weighting factor value that a
{SP} must have in order to be selected. Clearly, with only minor modification to the
compatibility records it is possible to restructure the entire tree or to add new
{PS}'s. This would have been a difficult task if a procedural language had been used

to implement the system.

(compatibilityl ^PS Design ^SP type-synthesis

-type complex "typei fixed)

c Comments:
c Type-synthesis is a compatible subproblem-space of the problem-space "Design".
c Type-synthesis is a complex sub roblem-space.
c Type-synthesis is a fixed subproblem-space.

(compatibility2 -PS eliminate-type of joints ^constraint speed

^SP eliminate-p joints ^wt <to-be-found-under-evaluate-

constraints-operator> ^cutoff <PS-dependent>)

c Comments:
c Speed is a constraint associated with the eliminate-type of joints" problem-space.

c Eiminate-p joints is a compatible subproblem-space of the eliminate-
c type of joints problem space.
c A weighting factor value, <wt.>, associated with the eliminate-p
c Joints problem-space determines if p-type joints should be eliminated
c from the mechanism design.
c A cutoff value, <cutoff>, indicates the minimum weighting factor value
c that the eliminate-p joints problem space must have in order to be
c selected (i.e., not rejected) for use in the design of the mechanism.

(compatibilityl ^PS eliminate-type of joints ^SP eliminate-p joints

^type simple ^typel probabilistic)
c Comments:
c Eliminate-p joints is a compatible subproblem-space of the problem-space
" eliminate-type of joints.
c Eliminate-p joints is a simple subproblem-space.
r E!iminate-p joints is a probabilistic subproblem-space.
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The three compatible {SP}'s corresponding to the "Design" {PS}, as shown in

Figure 4, will then be created and set to a "pending" status. Since this (PS) is "fixed"

the system will pass over steps I through 4 and jump to step 5, the reject operator

(Figure 5), and will look for knowledge to reject all but a single {SP}. One of the

rules that performs this function is given as follows: 19

(p reject-knowledge-in-design- I

(goal ^step reject-operator ^PS Design)

(SP -PS Design ^name problem-definition

"status pending)

(SP ^problem-space Design ^name (0> problem-definition}

status pending)

(modify 3 ^status rejected))

This rule states that when the current step is step 5, the reject-operator, in the

"Design" {PS}, and when the "problem-definition" {SP} is "pending" then reject all the

{SP}'s other than the "problem-definition" {SP}. After this step, the system will

execute step 6, the choose operator, and choose the only available {SP}. Thus, the
"problem-definition" {SP} is set to a "selected" status. Next, the system will move

on to step 7, the apply operator, and apply the chosen {SP}. After the "problem

definition" {PS} is executed, its status will change to "achieved". During the
"problem-definition" phase the system will query the user and associate his answers

with a data structure called constraint as follows:

(constraint ^name speed ^wt <a> ^status active)

c Comments:
c Speed is a constraint having both a weighting factor value, <a>, and a
c status associated with it.

After this (PS) has been executed different constraints will acquire an active status

and weighting factor values. For the variable-stroke engine design, typical inputs

would be:

1. High speed (wt. .9) and high loads (wt. .9)

2. Low noiseiness (wt. .8)

3. One input and output (wt. 1.0)

4. Rotary input (wt. 1.0) and slider output (wt. 1.0)

5. Control function within the mechanism (wt. 1.0)

etc.
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As soon as the system identifies an "achieved" {PS} it will backup to its parent

{PS}. Thus, control will return to the "Design" (PSI. There the control will be
assigned to step 4, the evaluate state operator (Figure 5), and the system will

determine whether the built in evaluation knowledge for the current {PS} makes the

current problem "achieved" or "failed". The system will also reset all the previously

rejected {SP}'s to a status of pending. Since the successful completion of the
"problem-definition" {PS} does not insure that the "Design" {PS} has been achieved,
knowledge in step 5, the reject operator, will decide which {SP} will be rejected.
The system at the current status will reject the "problem-relaxation" {SP} since it
would be expected to select the "type-synthesis" {SP}. Once the "type-synthesis" {SP}

is selected, it will become the current {PS} and the procedure shown in Figure 5
will be carried out by its {SP}'s. This procedure will set the "eliminate-type of

joints" {SP} to be the current {PS}. Up to this point the status of the executed {PS}'s

would be as follows:

Pending: Start, Design, type-synthesis, eliminate-type of joints.

Rejected: Tutor, problem-relaxation and get-graph.

Achieved: Choose phase, Problem-definition.

The "eliminate-type of joints" {PS} is probabilistic. After its two rooted {SP}'s
are proposed, the operator in control will be "evaluate-constraints". Depending on

user input, knowledge provided by a mechanism design expert will compute a
weighting factor value that will be used by the next operator to compute the total

degree of compatibility of each {SP. Thus, the next operator will use the expert's

assessment and the weighting factors assigned to the input, by the user, that are

compatible with the current {SP} to compute the degree of compatibility of each of
the {SP}'s. In a more general implementation of this system additional {SP}'s would

exist such as reject cam joints, reject spherical joints, etc. For the design of a
variable-stroke engine the last three {SP}'s would have the highest degrees-of-

compatibility since for high speed and high load operating conditions, joints having

surface contact rather than line contact are preferred and probably required.

Next, the system will check for the existence of any knowledge that would make

the rejection of a (SP necessary. For example, in this design case, both the
"eliminate r-joints" and "eliminate p-joints" {SP)'s would be rejected. The eliminate-

type of joint (PSI would continue to select and execute unrejected {SP}'s in order to
make certain joint types available to lower level fSP's. When there are no longer

any {SP}'s having weighting factor values greater than the cutoff value, the

"eliminate-type of joints" (PS} will acquire a status of "achieved" and backup to the
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"type synthesis" {PS}. In the "type synthesis" {PS}, the "get-graph" (SP) would then
be selected. The current status check, relative to the last status check, of the

executed {PS}'s would be as follows:

Pending: Type synthesis, get-graph.

Rejected: eliminate r-joints, eliminate p-joints.

Achieved: eliminate-type of joints.

The goal of the "get-graph" {PS} is to assign values to parameters that define the

kinematic structure of the mechanism. These parameters are:

1. F, degree-of-freedom of the mechanism. This is determined by the number of
inputs required to drive the mechanism as well as the number of required

outputs, specific application requirements (i.e. how the mechanism is to be
used) , the degree of complexity of the mechanism and whether or not the

mechanism is required to be adjustable. This information is acquired from the

user.

2. Lind, number of independent loops in the mechanism. This variable is indicative of
the degree of complexity of the mechanism. Its value is determined in the {PS}

"define-current-Lind". The system will define, based on heuristics, a minimum and
a maximum value for Lind, starting from the minimum value since simplicity is a

desired property. In this design case, Lindmin must be > 2, based on Rule-4
of the "evaluate-graph" {PSI, since a control loop is required to vary the stroke of

the output link. The given design specifications require a value of L ind 3 in

order to provide separate input, control and output loops. The maximum value for

Lind could, in general, be determined, for example, from cost and compactness

limitations, as well as from input/output requirements.
3. fi, the degree-of-freedom of relative motion permitted by the ith joint.

4. 1, the number of links.

5. j, the number of joints.

6. X, the mobility of the space in which the mechanism operates. X 3 for general
plane mechanisms, X = 6 for spatial mechanisms.

The general degree-of-freedom equation may be expressed as [5]:

F =X( - j - 1) + f. (1)
i=1'

The number of independent loops is given by the equation [15]:

Lind= I + j- (2)
21

55 Y

,.. . p' .~, , %d~~..N q



Equations (1) and (2) can be combined, into the following equation:

X = F + X Lind (3)i-In

Based on equation (3) with Lind = 3 (as previously discussed), F = 1, and X = 3

(for a general plane mechanism) the sum of the degrees-of-freedom for all the ... J -

can be calculated:

1
1, i fi - I + 3 * (3) = 10 (4)

Since high load carrying capability was a specified design requirement, only revolute

(R) and prismatic (P) joints, each having one degree-of-freedom (fi = 1), can be

included in the design. Based on this information, equation (4) yields a value of j

10. Rearranging equation (2), the number of links can calculated as follows:

I= +j- Lin = 8 (5)
iin

In general, equations (2), (3), (4) and (5) can be used to determine values for j

and 1, depending upon the values selected for the Lind' F and X structural

parameters. Their values would be chosen, firstly, to achieve the simplest possible

design, based on heuristic knowledge appropriate to their selection. Once values for

I and j are known, appropriate graphs can be enumerated (labeling the graphs in as

many non-isomorphic way as possible) and different joint types can be assigned to

the edges of the graph in a way that insures the satisfaction of equation (3). This

has been implemented in a LISP routine (Figure 6). The next step involves the

evaluation of the graphs in the "evaluate-graphs" [PS) and the assignment of an index

to each of them indicative of the order in which they should be processed, i.e.

studied in greater detail. Additional generic (problem independent) rules can be

established to assist in the elimination of inappropriate kinematic structures thereby

further pruning the size of the mechanism design space.

As an example of the output provided by the system to the user on the Symbolics

3640 AI workstation, figures 7A, 7B, 7C and 7D display an enumeration of the

graphs and mechanism schematic diagrams of several eight-link planar kinematic

chains corresponding to numbers 1, 2 and 3 in group l and number 9 in group 3 of

those enumerated by Freudenstein and Maki [7] for the variable-stroke engine

mechanism problem.
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Figure 7A. 

F igure 78. 

Graph enumeration and schemat ic drawing for an eight- link planar 
variable-stroke mechanism (group 1, number 1; Freudenstein and 
Maki, [7]) . 

Graph enumer at ion and schematic drawing for an e ight-link planar 
variable-stroke mechanism (gr oup 1, num bE:.. 2; Freudenstein and 
Maki [7]) . 

57 



Figure 7C. 

Fig•Jr e 

Graph enumeration and schematic drawing for an eight -1 ink planar 
variable-stroke mechanism (group 1, number 3 ; Freudenstein and 
Maki [7]) . 

--~~~~~~ 

enumeration 
variable · stroke mechanism 
Maki [7] ) . 
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Eventually, kinematic and dynamic analyses would be undertaken for performance V3

evaluation at a lower level of the design process.

Cor1ldusions

A systematic methodology for representing knowledge and its control within an

expert system for the creative design of mechanisms has been presented. Careful

attention to the implementation of the control strategy for the

manipulation of knowledge has been an important aspect of this research in

anticipation of future growth of the MECXPERT system. The conceptual basis for the

system relies on the separation of kinematic structure and function. An example

based on the design of a varlable-stroke engine mechanism serves to convey the

manner in which information is imparted to and manipulated within the system in

an effort to enumerate potentially viable mechanism designs.
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Glossary of Terminology

Compatibility data structure:

Defines all the compatible {PS}'s and {SP}'s each time the system is initialized
(started).

Constraint propagation:

The process of establishing the compatibility of interconnected elements, in this
case {PS}'s and {SP}'s, within an expert system.

Creative mechanism design:

The process of solving a mechanism synthesis problem for which no prior, proven
solution exists, based on the systematic separation of kinematic structure from
function and employing heuristics where applicable for the selection of kinematic
structural parameters in order to narrow the mechanism design search space.

Cutoff value:

In order for a probabilistic {PS} to be selected it must acquire a composite
weighting factor value that is higher than the preset, expert defined, cutoff value
assigned for that {PS}.

Data-driven inference strategy:

The search for new knowledge or information proceeds from known data to a final
goal.

Deep domain knowledge:

Domain s ecific knowledge acquired over years of experience enabling an expert to
solve difficult problems in that domain that cannot be solved by only analytical or
numerical methods.

Experienced-based mechanism design:

The process of drawing upon knowledge concerning the structure-function
relationships of mechanisms obtained from (1) mechanism design experts and (2)
handbooks.

Failure handler:

Keeps track of a {PS} where failure has occured. When activated, the failure handler
will go to the {PS} recommended by the {SP} where failure has occured and initiate
a process parallel to one in which failure occured until the design is reset to a
desired status.

Goal-driven inference strategy:

The search for new knowledge or information proceeds from the goal to be achieved,
backwards, towards the known data.

Help facility:

A facility provided within MECXPERT which provides tutoring and advice to a user
concerning the meaning and use of system commands. It can be initiated
through the user specified system command word "explain".

Inference mechanism:
An interpreter that determines how to apply the rules in the knowledge base to
infer new knowledge and the order in which these rules should be applied in an
expert system.
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Instance:

A variable whose value has been specified, i.e. instantiated.

Knowledge acquisition:

The process of acquiring knowledge about a specific area or domain (in this case
mechanism design), from various sources, in order to bring this knowledge to bear
on a narrow domain of difficult problems.

Knowledge base:

The collection of knowledge, typically in the form of facts and rules, about a
specific domain (in this case mechanism design) to be used for decision making in
an expert system.

Knowledge roles:

Knowledge and the action which it can impart are stored in data elements referred
to as knowledge roles.

Mechanism synthesis:

The process of selecting the type, arrangement and number of links and joints in a
mechanism for the purpose of fulfilling predetermined motion conversion or power
transmission requirements.

Operators:

Data elements whose function permits the representation and control of knowledge.

Problem-space:

Represents the issue or concept currently under consideration. These are the states
that the system can reside in and pass through in its effort to achieve its goal.

Problem space status:

The status of a problem space, {PS}, can take on one of three possible values: (1)
Pending, (2) Achieved and (3) Failed. These are described in the text of the paper.

Routine design:

A design problem for which a proven solution methodology already exists and for
which the design variables are known.

Redesign:

The process of changing an existing design, based on proven techniques, in order to
comply with different design requirements.

Subproblem -space:

A subproblem-space, {SP}, represents the next available problem space.

Weighting factor:

Indicates the degree to which each of the constraints contributes to each rooted
{SP}. The weighting factors are denoted as wt . the degree to which the ith
constraint contributes to the jth {SP}. i/j

Working memory element:

A data element that resides in the working memory portion of program memory
during program execution.
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Abstract

In order to overcome the problem of lack of generality in nonlinear

programming (NLP) test problem formulation and to introduce the concept of

cognitive NLP method switching, statistical machine learning has been applied to a

sample data base of nonlinear programming problems. Reasonable conclusions have

been drawn about an optimization problem type and a corresponding sequence of NLP

solution algorithms, using statistical pattern recognition applied to local (vs. global)

design information. A program, referred to as OPTDEX-OLDM, with the capability

of learning from statistical pattern recognition is discussed. The statistical aspects

and algorithmic optimization of the nonlinear programming problem are emphasized

in this discussion. A clustering process has been performed on attributes assigned

to the NLP problem sample data base, and an example which describes this

statistical clustering process is discussed.

Introduction

Numerical optimization techniques, in the form of nonlinear programming (NLP)

algorithms, have been applied extensively to critical structural design and analysis

problems for more than 30 years [I], and to a lesser extend to mechanical design

problems [2].

The nonlinear programming problem considered here takes the form,

Minimize: F(X) objective function

Subject to:

gj (- ) < 0 j 1, m inequality constraints

hk ( X) 0 k 1, 1 equality constraints

X < X. -<X. i 1, n side constraints

where X2 , vector of design variables.
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Numerical optimization provides a systematic, rational and directed approach to 

design decision making where previously, heavy reliance was placed on the 

experience and intuition of the designer in achieving an improved design. Due to 

complexities involved in the implementation of NLP algorithms, several researchers 

have undertaken performance analyses [3,4,5,], the purpose being to determine 

correlations among the design problem type, the numerical optimization method and 

the corresponding results. Based on such studies, it is anticipated that the novice 

user should be able to better' understand the capabilities of existing optimization 

methods and furthermore, utilize them without the need to undertaken exhaustive 

programs for testing and learning. While in concept this appears to be a rational 

approach to ascertain the capabilities of a particular algorithm for a specific 

problem, in reality, Himmelblau [6] states that "a guarantee of convergence for on 

algorithm for special cases may offer little insight as regards satisfactory 

strategies for more complex problems". 

An optimization process invariably involves a trade-off between reality 

(completing and understanding the search process) and economy (evaluating a limited 

number of test functions). A process referred to as statistical concept learning^ is 

introduced to compensate for this trade-off. Based on a well organized data 

hierarchy, concept learning has been developed to eliminate unwanted knowledge 

which may occur due to noisy data^ [7] and a scheme for generalization of the 

statistical results has been developed. 

Method Switching Strategies in Nonlinear Optimization 

Existing algorithms for nonlinear programming which have been surveyed [8,9] 

may converge to local optima which are not necessarily global optima. Many 

techniques for locating global optima, aside from knowing which method is the best 

first method have yet to be uncovered. Method switching strategies are based, by 

analogy, on the game of golf^ rather than on the use of a one step optimization 

scheme. This method switching procedure is designed to be one level higher than the 

so  called  optimization     strategy  level   [10]   (monitors  the  numerical  optimization 

^ Statistical concept learning: Learning about new concepts by using given statistical 
measurements. 
Noisy data: A small amount of data contradicting the conclusions which are agreed 
upon by a majority of the remaining data. In other words, data lying outside any of 
the defined cluster groups (Figure i.). 

Game of golf analogy: The reason for method switching is in accordance with the 
local geographical design information at the numerical optimum, and is analogous to 
"he ress'i-n for selecting an appropriate golf club, in the game of golf, to strike the 
the ball. 
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Group #3

3000- Group #2

Group #1
1000

Subalusters"

Frequency of ignition timing error

Figure 1. A clustering example.

1. Group #1 (low rpm) and Group #3 (high rpm)
cause more ignition failures.

2. Those points which are not enclosed within
any of the groups have been referred to as
noisy data.
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process) and switches suitable numerical method combinations according to local

design data.

For example, in the following problem containing a single objective function,

design variable and constraint:

Minimize the design objective function: COS (x/1000 - 5.)

Subject to the design constraint function: 400. - x2 < 0.

with design variable bounds: 0. x < 7500.

The following cases may possibly occur,

case 1: When Ix >> 20, the local information indicates that the design constraint is

inactive.

case 2. When x - 5000, the local information indicates that the objective function

can be linearized to a polynomial of degree 2, which is I - (x/j000 - 5)2/2.

case 3. When Ix - 5000I < 10, the local design information indicates that the

objective function can be linearized to a polynomial of degree 4 by using an

approximation of a Taylor series expansion.

case 4. When x > 7500, one more design constraint is added from the design

bounds, which can be expressed as x -- 7500.

This example demonstrates that local design information can change in various

ways when the updated state of the design variables (position) is altered. Method

switching strategies are based on this phenomenon and may be likened to a monitoring

or blackboard4 style decision making process. Method switching keeps track of the

local optimization information and switches methods when the current method fails.

According to the schematic representation depicted in Figure 2, the first design

starting point, P1, lies in an infeasible design region and is far away from the

globally optimal point. A temporary goal may be expressed as "move the design into

the feasible region as soon as possible" to increase the design efficiency. When the

design "converges" at a local optimum, P2, current NLP methods fail to move away
from this point. In accordance with the local information found in the vicinity of

P2, the method switching manager pins down another temporary goal which may be

stated as "find a feasible design with a smaller objective value". Method switching

terminates when the convergence criteria have been satisfied. This is usually based

on (1) a cpu time consumption limitation, (2) the number of algorithm iterations or

(3) relative or absolute difference between successive values of the objective

function.

'Blackboard architecture: A model in which all intermediate messages and results
3re displayed to the user and stored in a common area, called a blci"Doar'u.
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•& Design constraints.
]I.L L I :Design side constraints (design bounds).

Global optimum
The closed curves are isoclines of the design objective
function.

P1, P2, P3 are intermediate starting points for searching.

Figure 2. An example which demonstrates that local
design information is different for different design
starting points.

-
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Sample Problem Testing

Fifteen different attributes have been chosen to characterize the test of a sample

problem. The sample problems can be separated into three domains:

1. The Design Problem Type - contains 8 parameters, including the number of design

variables, the number of total design constraints, the number of equality design

constraints, the number of active inequality design constraints, the maximum

(positive) order of testing polynomials, the minimum (negative) order of testing

polynomials and the function evaluation cost for one design function evaluation.

2. The Choice of Nonlinear Programming method - contains 3 parameters, which

according to the ADS numerical optimization library [10] are strategy, optimizer

and one dimensional search method.

3. The Performance of the Result - contains 4 parameters, including the minimum

objective value reachability, the design constraint violation condition and the

maximum distance of search.

The set of test problems for the learning program have been produced by a random

function generator (Figure 3), which randomly selects a problem type, and in

accordance with the selected problem type generates the objective function and the

design constraint equations. These polynomials can be thought of as local information

in real world design problem formulations since many functions can be expressed in a

Taylor series expansion. Nonlinearity, discontinuity and differentiability can be

altered by appropriately adjusting the order of the polynomials.

After implementing these concepts using the ADS numerical optimization library,

design problems have been tested by a number of method combinations, which have

been randomly selected. The authors have generated approximately 10,000 samples

with results using an IBM PC/AT microcomputer. These results have been

subsequently analyzed, using statistical machine learning concepts incorporated

within a program referred to as OPTDEX-OLDM (Optimum Design Expert-

Optimization Level Design Manager), on a Symbolics 3640 Al workstation.

Clustering and Associated Statistics

Every sample inherently has several attributes, which include the characteristics

of the design problem type, the category of the nonlinear programming method and the

corresponding result. All of these attributes are represented quantitatively and some

of them are noisy, i.e. unreliable. To minimize the noise factor, a "variance" type of

analysis [4] has been employed.

Clustering techniques [13, 14,15,16] are used to find groups of samples, whose

common characteristics have not been predefined. The aim is to subdivide the
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Random generation of
Random 1. No. of design variables.
function 2. No. of design constraints.
generator 3. Characteristics of design

0 - 30 constraints (based on a
polynomial representation).

a. Maximum order (+).
b. Minimum order (-).

4. Design objective (using
the same procedures as 3.).

Calculate function evaluation
cost by counting the

incorporated math. operators.

Automatically generates the Fortran
program, corresponding to ADS [11].

and tests it with all the method com-

binations which are provided in ADS.

Record the results including.
1. Design constraint violation

and output values.
2. Design objective value.
3. No. of function evaluations.
4. Search distance from initial

point to final result

To machine learning stage.

Figure 3. Flow control of random sample generation and testing.
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available samples into a relatively small number of groups, based on the statistical 

behavior of the different attributes. 

The clustering analysis involves the following concepts: 

i.   Scaling:   Tranforms   the   real   vyorld   value   of   each   attribute   into   a   machine 

understandable scale. This can be done by calculating the mean, /j, where 

m 
/i = (i/m)      2    ^ (2,a) 

i = i 

and the standard deviation, a, where 

a = VE ((A - jj)') (2.b) 

where m = total number of data samples. 

a.= value of the i     attribute. 
1 

A = random variable which can assume the value a.. 

■ E = expected value (statistical sense). 

Various models may be chosen to represent the statistical distribution of the 

attributes.     For  example,   if a  Gaussian  distribution  is  chosen,   then  68%  of 

samples will be distributed within one standard deviation about the mean, /u, and 

about 95% of the samples will be distributed within two standard deviations about 

the mean, ^. According to the mean, }u, and the standard deviation, a, found for 

each  variable,  all   the  variables  are  normalized  and  digitized  to a   predefined 

scale. For the purposes of this research, 0 through 9 has been selected. 

2.    Non-hierarchical   clustering:       Non-hierarchical   clustering    is   based   on   the 

optimization   of  a   given   grouping   of.objective   functions,   and   represents   the 

minimization   of   the    sum    of   the    variances    within   each   group    and    the 

maximization of the sum of variances between groups. 
n 2 

min 2      I I a| - Sj  I ! 
C6p (n, M)   j=i, leC. (3) 

J  "    J 

J 
n _     _ 

and max ^     m .  I ! a . - a 

C € p (n, M)       J=l 

where C = (Ci, C2, C3, ..., C }   and C. represents the i     cluster group. 

M = {1, 2, 3, ... , m}; set of all samples. 

p (n,M) ~ set of all cluster groups C of M having length n. 

n - nuBtibef of t-luster groups; 1^ n ^ m. 

li - the expected value of the total sample of attributes. 

a. ^ the expected value of C ., 

m . = the number of samples in C.. 
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Since the total scatter in a fixed sample size is constant [10], it is sufficient to

minimize the sum of variances, W(n,M), within each group. Therefore, eq. (3) can

be expressed as follows,
n 2

min W(n,M) min a i - a (4)

CE p (n, M) j=i, i E C

The necessary tools for the clustering process are described below.

To calculate the new mean value from two given groups:

ap+q mp+mq (mpap+ mq a) (5)

and to calculate the objective value (sum of variances) of the two given groups:

Wp+q W p +Wq p p ap+q ap ap+q

m q a q a p+q a q a p+q (6)

3. Clustering strategy. Since the number of all possible cluster groqp combinations

(total clustering) can become prohibitively large, it is imperative that a

reduction in the number of clusters be attempted. For example, say m samples

(attribute values) have to be clustered into less than or equal to n groups. This

number of clusters is given by:

1 n n - n )
H (n,m) = ] n (- 1) i J m  (7)

i=I
30

For m = 1000 and n = 15, H (n,m) is greater than I * 10 For this reseach,

m=10,000 and 150 n < 300, therefore the clustering is not practically

achievable. As a result, a special strategy has been employed to alleviate this

problem. Instead of searching for total clustering, the OPTDEX-OLDM program

starts from m samples and allows each .ingle sample to be a group, i.e. n = m.

The program then attempts to decrease the total number of cluster groups, during

each clustering cycle, by one. During each cycle the program searches for any two

groups from the current set which satisfies the criterion of equation (4). This

clustering process terminates when the number of groups, denoted by n*, satisfies

the following condition,

min W (n*, M) 2> Wacceptable (8)

Based on this clustering strategy, H (n,m), the reduced number of clusters are:
m2 - 2
m -m -(9)

H' (n,m)

2
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For the m = 1000 and n = 15 case, HI (n,m) z 5E+05. Athough noise may bias this

type of clustering in the very early stages of processing, as previously predicted,
12

when compared with the increased efficiency, of approximately 2 * 10 times, it is

an acceptable strategy. Flow control for this process is shown in Figure 4.

Explanation of The Statistical Results

An explanation facility [17] is an important feature which distinguishes artificial

intelligence programs from usual programs. Its purpose is to present the

computational results in the form of a natural language so that is comprehensible to

a novice user. In addition, this capability forms the basis of incremental machine

learning. A simple example that demonstrates how machine learning provides an

explanation for a resulting cluster group follows:

Group 1. Number of members = 17

Attribute Range Mean Variance

Nonlinearity 0-9 8 3.0

Strategy 0-9 2 0.2

Distance-of-Search 0-9 1 1.0

Response from the OLDM:

OLDM> I found that (as supported by 17 samples),

IF

Generally-speaking, the nonlinearity is very-high, and

Definitely, the strategy is the linear extended interior penalty
function method.

Then

Most-likely, optimization searching will be very-local.

(Underlined explanations represent terminology derived from the statistical results).

Classification and Incremental Machine Learning

Automatic concept learning, implemented in the form of concept learning

generalizations , has been shown to be useful in interpreting and organizing large
amounts of information about a domain [?] After performing the initial clustering

from the test samples (ten thousands sampJles in this case) the OPTDEX-OLDM

'Concept learning gerneralization: The automatic generalization of a concept based on
a sufficiently large number of agreements among specific case (non-general)
concepts. In other words, expanding a concept to include a more general class of
specific cases than previously included.
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Data encoding.]

Data normalization& scaling.

SNon-hierarchical1

cluster analysis.

NoAral

Explanation of
statistical results.

(Explanation Facility)

Generalization process &
knowledge base formulation.

Figure 4. Flow control of cluster analysis.

75

W-3 AN



program reaches approximately 500 conclusions. These conclusions may overlap one

another, some of them may be redundant and they all have to be appropriately

formatted into a rule-based expert system.

Creating a classification scheme is typically the first step in developing the

heuristics (rules of thumb) for a collection of observations or phenomena. The goal

of the classification scheme is to structure given observations into a hierarchy of

meaningful categories [6]. The OLDM applies generalized-based memory to build up

a hierarchy of conclusions. It actually constructs a connective network to derive

conclusions in a canonical form. A detailed explanation of this process is provided

by Lebowitz [7]. An important feature of the OLDM is its ability to manage

contradictions between conclusions, referred to as noise, by simply counting the

number of supporting members for each conclusion. For example, the following

conclusions (non-generalized) have been drawn by the OLDM:

Conclusion 1. Supported by 19 members i

If the Discontinuity is high and

the Optimizer-choice is Golden-section-method

then the objective value is less-minimized.

Conclusion 2. Supported by 25 members

If the Discontinuity is low and

the Optimizer-choice is Golden-section-method

then the objective value is less-minimized.

Conclusion 3. Supported by 4 members

If the Discontinuity is high and

the Optimizer-choice is Golden-section-method

then the objective value is minimized.

The generalized concept, drawn by the OLDM, based on these conclusions is:

OLDM> CONCEPT-008:

If the Discontinuity is high or low' and

comment: '<this result is based on the generalization of conclusions I & 2>

the Optimizer-choice is Golden-section-method

then the objective value is less-minimized."l

comment: *"<the number of members supporting conclusion I is greater than

the number supporting conclusion 3>

Another important feature of the OLDM is its ability to perform on-line

statistically incremental machine learning. The OLDM is an on-line consultant during
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numerical optimization processing which has been incorporated within the ADS

(Automated Design Synthesis) optimization library. According to the existing rules

and local information from updated optimization searching, it chooses and switches

methods combinations from ADS and feedsback the result of each applied rule. These

feedbacks are always represented in a standardized format with 14 parameters as

previously described. Each piece of standardized information can be treated as an

additional test sample, ae, clustered into a group, C. which satisfies the following
condition.

mi + I [a [a T (8)

C E p (n, M) m.j+ e

During the incremental machine learning process, any of the existing cluster groups,

say Ck, such that Wk > Wacceptable, has to be re-clustered by utilizing the

procedures which have been discussed. After the re-clustering process has been

completed, new concepts (conclusion) are born and/or old concepts die. This is

referred to as the birth-and-death procedure for maintaining and renewing concepts

in the knowledge base.

Conclusion

A new approach to design optimization, referred to as cognitive method switching,

using nonlinear programming (NLP) algorithms applied sequentially, based on local

design information, has been presented. Statistical evaluation with clustering of

attributes associated with a randomly generated problem sample data base, containing

over 10,000 samples, has led to the generation of guidelines for the application of

NLP algorithms to design optimization problems. Continued expansion of the problem

data base should permit more generalized guidelines to be obtained and thereby assist

the nonexpert user in cognitively selecting an appropriate sequence of NLP algorithms

for a specific design optimization problem.
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TOWARD A NONEQUILIBRIUN THERNoDYNW(ICS OF TWO PHAS
NATERIALS WITH SHARP INTERFACE

Morton E. Curtin
Department of Mathematics

Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACt. This is a review of recent work of the author toward the
development of a nonequilibrium thermodynamics of two-phase continua based on
the first two laws in forms which contain interfacial contributions for energy
and entropy. Topics discussed are: thermodynamic restrictions on constitutive
equations: interface conditions; free-boundary problems for solidification and
melting.

1. INTROUCION. The classical theory of Stefan, for the melting of a
solid or the freezing of a liquid, is too simplistic to account for the myriad
of phenomena which occur during solidification (an example being dendritic

growth, in which simple shapes evolve to complicated tree-like structures).
Recent attempts to rectify this situation involve replacing the classical
free-boundary condition,

O(xt) = 6M on (1.1)

for the temperature @(xt) on the interface o(t), by a condition in which
the mean curvature H(x,t' and the normal velocity V(xt) of o (t) are
allowed to influence the temperature:

e(x,t) = 6M - hH(x,t) - bV(xt). (1.2)2

Here 60, a constant, is the transition temperature, the temperature at which

the bulk free energies of the solid and liquid coincide, while h and b are
constants.

The relation (1.2) with b = 0 is usually derived by assuming that (at
each time) the interface is in thermal equilibrium with the bulk material, and
then linearizing the interfacial condition obtained as a consequence of Gibbs'
criterion for stability. The complete relation (1.2) with b = 0 is
generally justified on an ad hoc basis, since the presence of the normal
velocity V precludes the use of equilibrium thermodynamics. A

Cf., e.g., Chalmers [1] and Delves [2] for discussions of these phenomena. %

2For solidification problems, free-boundary conditions of this type, with
b = 0, were introduced by Mullins and Sekerka [3], [4]; the term involving V
was added by Voronkov [5], Seidensticker [6], and Tarshis and Tiller [7].
(See also the review articles by Sekerka [8]. [9], [10], Chernov [11], Delves
[2], and Langer [12].)
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One expects that free-boundary conditions derived in this manner are a
valid approximation in many situations. On the other hand, since the
underlying physical problem involves a physical system out of - although
possibly near to - equilibrium, it would seem advantageous to develop a
nonequilibrium thermodynamics which yields, as consequences, appropriate
free-boundary conditions for the interface between phases. This review

discusses recent work [13]3 by the author toward the development of such a
nonequi I ibrium thermodynamics.

2. BASIC OIRCEP S. The work [13] begins with the first two laws in
forms which are appropriate to a continuum and which contain interfacial
contributions for energy and entropy; but to avoid inessential complications,
attention is restricted to nondeformable bodies in the absence of diffusion.

A fairly general constitutive theory for the interface is considered.
The free energy f and entropy s are allowed to depend on the temperature
0 and on the orientation of the interface through a dependence on its unit
normal a:

f = f(O,.). s = s(G.). (2.1)

(The dependence on a is included to model crystal growth.)

An essential requirement of the theory is that the temperature depend on
the ktnematics of the tnterface. In particular, a constitutive relation

6 = e(v,=.L) (2.2)

giving the temperature as a function of the normal velocity V of the
interface, the curvature tensor L for the interface, and the normal m is
introduced.

One might expect that the motion of the interface (relative to the
underlying material structure) induces a transfer of mechanical energy within
the interface. To allow for this possibility, a tangential vector field j
is introduced; for c an arbitrary subsurface of the interface a.

- J- (2.3)
ac

represents a flow of energy into c across Oc. Here v (a tangential
vector field) is the outward unit normal to the boundary curve 8c. The
vector field J is called the accretive emrgy flux, and the description of
the interface is completed by adding a constitutive equation

j = J(v,mL); (2.4)

interestingly, for an isotropic interface this flux vanishes identically.

3Based on the earlier study [14].
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Triplets (V,,L) in the common domain of 6 and J are called states,
and states with V = 0, L = 0 are called equilibrit states.

It is not clear what thermodynamic restrictions ought to be placed on
these constitutive assumptions, and it would seem appropriate to use the
second law - in the manner of Coleman and Noll [15] - to derive such

restrictions.4 This is not as straightforward as it seems. For a rigid heat
conductor the treatment of Coleman and Noll [15]. developed for single-phase
materials, is based on the hypothesis that the second law be satisfied in all
processes generated - through the constitutive equations - by smooth
temperature fields. Here, however, there is an additional degree of freedom,
the evolution of the interface, and the constitutive restriction (2.2) does
not allow for an arbitrary assignment of both the interface and the underlying
temperature.

3. TEMR YANJYIIC ESTRICTIOM Oi aDrnri IVE EQUATIONS. Compatibility
with the second law leads to the following constitutive restrictions:

(i) the free energy has the form

f(Om) = f0(M) +

(ii) the entropy S(Om) = s(O) is independent of a and determined by the
free energy through the entropy relation

s(e) = -f()

(iii) the accretive energy flux j(V,mL) = J(V,.) is independent of L

and linear in V:

J(V,.) - VEC(); (3.1)

(iv) E(u) is determined by the free energy through the stress relation

E = - anf0(a);

(v) given any state (V,m,L),

V([(6)] - Hf - ac(m)-L} 0. (3.2)

where [*0()] is the jump in bulk free-energy across the interface.

4Murdoch [16] has applied this procedure to interfaces which do not move
relative to the underlying material.
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Note that (3.1) reduces the energy flow (2.3) to

ac

This integral has an obvious interpretation as power expended on c. with

-(n)*v a force5 in the direction normal to the interface. For that reason

f(m) is called the accretive stress.

One might object to the constitutive equations (2.1). (2.2), and (2.4).
as they are not consistent with the principle of equipresence. Consider
instead the system

f = f(V,m,L), s f(V=u,L),
(3.3)

0 f O(V,m,L), J J(V.m,L).

Near equiltbrium this system is no more general than the original system
(2.1), (2.2), and (2.4). Precisely, it is shown that, if (3.3) is compatible
with thermodynamics, then there exist a neighborhood of equilibrium N and

constitutive functions f(O6.) and s(0.m) such that

f(VnL) = f(O(V,n,L),n), s(V,..L) = s(O(V,.LI,m)

on N.

In classical theories of melting - in which the interface is devoid of
structure - changes of phase occur at the transition temperature 6M. Within

the present theory a consequence of the inequality (3.2) is that the interface
have temperature 0 at equilibrium,

O(V'mL) = 0 whenever V = 0, L = 0,

but that away from equilibrium this need not be so; in fact,

0 = 0M - f(u)H - b(m)V + div f(M)

is the linear approximation to (2.2) near equilibrium. Here f(m) = f(OMIm )

is the interfacial free energy at equilibrium, f(m) = f(m) is the accretive

5Within a purely statical theory such a force was introduced by Cahn and
Hoffman C17], .18]. whose work pointed out the need for a term of this form in

the energy equation when the interface is anisotropic. The vector f(m) is
actually the tangential part of the vector used by Cahn and Hoffman.
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stress, div0  is the surface divergence, b(n) is an orientation-dependent

constant, and we have chosen a scaling in which the latent heat e satisfies
e = 0 K,

4. FRE BOUNDARY P. Approximate interface conditions are derived for
a weak interface, that is, one in which the interfacial densities are small
and the dependence on V and L weak. These interface conditions, when
combined with the usual quasi-static heat equation in bulk, lead to the
following system of partial differential equations and free-boundary
conditions for the temperature difference u = 9 - 0M:

div q = 0, q - Kivu in Bi,

(4.1)
u = - f(n)H - b(m)V + div E(C). [q]-m = eV on 4.

Here 4 = 4(t) is the interface; Ki is the conductivity tensor for phase

i: B is the region of space occupied by phase i, q is the bulk heat

- flux; [q] is the jump in q across the interface.

Global growth conditions are found for the system (4.1). To state these
succinctly, consider a bounded solid B(t) in an infinite liquid melt, and
write

F~o) f f(.)

for the total interfacial free-energy computed using the equilibrium values of
the corresponding density. Then:

vol(B) = 0. F(4) 0 (4.2)

provided the liquid is thermally isolated at infinity, while

f(4) + u vol(B) 0 (4.3)

whenever the liquid is isothermal at infinity. Here u. is the (constant)

far-field temperature-difference.

The results (4.2) and (4.3) motivate two variational problems:

(Vl) minimize F(o) subject to vol(B) = constant;

(V2) minimize F(0) + u,, vol(B).

The problem (VI) and the problem (V2) with u,,> 0 are well posed. On the

other hand, (V2) with u. < 0 has no solution, as all minimizing sequences
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have vol(B) -4 I. This is as expected: u. < 0 corresponds to a solid in a

supercooled liquid melt, and vol(B) -i- indicates the ultimate envelopment
of the liquid by the more stable solid phase.
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ABSTRACT

The shear-lag model is applied to a monolayer, unidirectional, fiber-reinforced
composite loaded in tension. The monolayer contains an infinite number of
parallel fibers, with an arbitrary number of them broken simultaneously. While
the fibers are modelled as linearly elastic, a linear viscoelastic constitutive
law is assumed for the matrix material. The time evolution of the overstress
profiles in the fibers and matrix near breaks is determined. The time
dependence of the effective load transfer length is also calculated. Explicit
evaluations of the above quantities are given for a power-law creep compliance
model, suitable for most epoxy thermosetting resins as matrix materials.

INTRODUCTION

The shear-lag model for a unidirectional composite was developed by
HEDGEPETH (1961) as an attempt to describe the stress fields around broken
fibers. It is a simplified micromechanics model for which closed form
solutions can be obtained. In Hedgepeth's analysis the fibers are parallel,
equally spaced and of infinite length. The monolayer includes an infinite
number of fibers with a cluster of them broken (see Fig. 1) and is loaded by
uniformly distributed tensile tractions in the direction of the fibers. Both
fiber and matrix materials are assumed to be linearly elastic. The drastic
simplification introduced by the shear-lag model is the decoupling between the
mechanisms that respond to shear and normal stresses in the composite. It is
thus assumed that the fibers alone bear the normal stresses along the fiber
direction, while the matrix material acts only as a shear transfer mechanism
that overloads the adjacent fibers in tension whenever a fiber breaks.

The method of influence coefficients was used for the solution of the
above problem and the explicit evaluation of the overload coefficients of the
intact fibers due to fiber breaks was given by HEDGEPETH (1961). Closed-form
solutions in terms of Bessel and Weber functions for the overload and
displacement fields of the fibers were reported by FICHTER (1969,1970), who
also looked into the problem of more than one groups of breaks. A later work
by HEDGEPETH and VAN DYKE (1967) incorporates an elastic-perfectly plastic
model for the matrix material. In a subsequent work VAN DYKE and HEDGEPETH
(1969) assumed that the matrix fails completely when a maximum shear stress is
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reached. A modified version of Hedgepeth's shear-lag analysis was undertaken
by ERINGEN and KIN (1974), who took into account the normal stresses in the
matrix transversely to the direction of the fibers. Along the same lines was
the analysis of GOREE and GROSS (1979) with the additional inclusion of
longitudinal yielding and splitting of the matrix and later on an extension to
the 3-D case (GOREE and GROSS, 1980). Comparisons of the predictions of the
shear-lag model with 3-D finite element calculations were done by REEDY (1984).
He found excellent agreement between the two methods for the fiber stress
concentrations in a Kevlar/epoxy monolayer for load levels that do not cause
matrix yielding.

In the present work we analyze the time response predicted by the
shear-lag model of a unidirectional, monolayer composite with an infinite
number of parallel fibers loaded in tension in the direction of the fibers, by
assuming a time dependent consitutive model for the matrix material. We take
the matrix to be linearly viscoelastic, and as a special case we investigate
the consequences of a power-law, time dependent, creep compliance on the time
evolution of the overstress profiles around broken fibers. Such a power-law
creep compliance is commonly used to model the time response of epoxy
thermosetting resins, which are often used as matrix material for non-metallic
composites (POMEROY, 1978). A linear viscoelastic model for the matrix has
previously been used by LIFSHITZ and ROTEM (1970) in their statistical theory
of failure for composites, where Schapery's approximate technique was used to
obtain the time-dependent solution of a shear-lag model that lumped all broken
fibers into a single fiber.

In the first section the formulation of the shear-lag problem is presented
for a unidirectional composite under tension with broken fibers and a linearly
viscoelastic matrix. Also described is the method of solution which uses
Laplace transforms and finite cosine transforms. In the second section a
power-law creep compliance is assumed for the matrix, and explicit evaluations
of the overloads in the adjacent intact fibers, the shear stresses in the
matrix and the effective load transfer length are carried out.

1. FORMULATION OF THE SHEAR-LAG PROBLEM

The model of a thin. unidirectional laminate is shown in Fig. 1. where all
fibers are identical and parallel to the X axis and have an equal center-line
spacing H. The laminate is considered to be a two-dimensional infinite region
with an infinite number of fibers, out of which (2N+l) neighboring fibers are
broken along the Y axis at time T = 0. We are interested in calculating the
subsequent stress fields near the breaks in the fibers and the matrix.

Both the X and Y axes are axes of symmetry for the laminate in terms of
geometry and loading. The external loading is uniform tension applied in the
direction of the fibers, which are taken to be the only tensile load carriers.
This is a justifiable assumption for most non-metallic composites because the
Young's modulus of the matrix is usually one or more orders of magnitude less
than the axial Young's modulus of the fibers.

The thickness of the laminate B and the fiber spacing H are of the same S
order as the diameter of the fibers D, which is small compared to the length of
the fibers L. If we take as a reference length unit the fiber diameter D, then
L -, m. The width of the laminate becomes infinite in this length scale as
well, as it consists of a large numbers of fibers. The infinite laminate model
is therefore a good approximation to the real configuration of the composite,
at least before extensive breaking of the fibers has taken place. If the
clusters of breaks are not sufficiently far away from each other, their
interactions should be taken into account. However, in the linear theory the
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superposition principle can be applied, and the problem reduces again to the
infinite domain problem with only one group of breaks (the (2N+1) broken fibers
in our analysis).

The mechanism of the shear-lag model is a highly idelized one. In the
absence of breaks the whole laminate is in a homogeneous stress state with the

only nono-zero stresses being the constant normal stresses 4Pe/ rD in the axial

direction of the fibers. The load P. is the constant tensile load applied to

each fiber at an infinite distance from the breaks. The matrix material is
normal stress free before any breaks occur. This is true if sufficient time
has elapsed from the loading of the composite so that stress relaxation in the
matrix has occured. Approximately the above is true for any time, since we
have assumed that the fibers are much stiffer than the matrix in tension. As
soon as one fiber breaks, the load of that fiber near the break is transferred
to the neighboring fibers by means of shear forces, which are exerted on the
matrix material through the fiber-matrix interface.

A free body diagram of an infinitesimal portion of the n th fiber together
with its surrounding matrix is shown in Fig. 2. Even though the fibers are
cylindrical and the stress fields in the laminate are inherently three-
dimensional, we simplify the problem by first assuming constant normal stresses
in all cross-sections perpendicular to the fiber axis. We then assume constant
shear stresses in the matrix in the XZ plane in the Z direction, and in the Y
direction between two neighboring fibers. To Justify the last assumption we
introduce an effective width Hf of the matrix layer between two neighboring

fibers, such that the product (BHf) gives the matrix cross-sectional area

(BH - ID2/4) between these fibers. It is obvious from the above that the

effective width Hf must be equal to (H - wD2 /4B). If B is substantially larger

than D, the requirement of constant shear stresses in the Z direction is not
valid any more, and an effective thickness Bf has to be introduced. As a first

approximation we can choose Bf = D. in wich case Hf = H - TD/4. The

assumptions about the effective width and the effective thickness require the
notion of an effective shear modulus for the matrix, to be determined by
experiments. The effective shear modulus will in general be different for
different cross-sectional geometries of the fibers and different ratios B/D.
Detailed discussion on the selection of Hf and Bf is given by REEDY (1984).

Further simplifications introduced by the shear-lag model concern the normal
stresses in the matrix in the X direction, which are neglected for reasons
mentioned earlier. The normal stresses in the matrix in the Y direction are
assumed to remain constant throughout the effective width of the matrix. Any
out-of-plane stresses in the fibers and in the matrix are neglected as well, as
the problem is assumed to be two-dimensional in the above introduced effective
configuration.

By taking into account the above simplifications and in the absence of
inertial forces, equilibrium of forces in the X and Y directions (see Fig. 2)
results in the following equations:

(1)%
aX

Pn+ Bf('nl-Tn 0 -0 < n <
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n+l n ( = 0 . f< n < . (2)

where P is the normal load in the nth fiber. T n is the shear stress in the

nnmatrx btwen th n h ~ (n-l)th fibers, and ?n is the normal stress in the

matrix between the nth and (n-l)th fibers in the Y direction. Eqn (1) implies
that the variation of the normal load along a fiber is due to the difference in
the shear stresses applied by the matrix on both sides of that fiber. Eqn (2)
implies that the dependence of the matrix shear stress on the distance from the
breaks results in non-zero normal stresses in the matrix in the Y direction.
These normal stresses are maximum near the breaks, where we expect the largest
variation in the shear stress, and they might be important in the analysis of
the fiber-matrix interface, for example in the case of debonding. Note that
equilibrium of moments does not hold in the infinitesimal element of Fig. 2, as
a result of neglecting the shear stresses in the fiber cross-sections in the Y
direction, unless we assume that the ratio D/Hf is very small. Since D is of

the same order as Hf for most applications, we propose the use of a correction

factor that restores balance of moments by replacing Yn with HTn/Hf ,

-< ( n < -, in eqn (2).
Upon specifying constitutive relations for the matrix and fibers, the

above set of equations becomes field differential-difference equations for the
thdetermination of the displacement fields U and V of the n fiber along the X

n n
and Y directions, respectively, as functions of position X and time T. In the
present work we assume that the fibers are linearly elastic, namely

8U
nPn AE w-' (3)

where A is the fiber cross-sectional area and E is the axial Young's modulus of
the fibers. The matrix material is taken to be linearly viscoelastic in shear,
that is

n =  G(T-S) an dS, (4)
i~ (XT s h harsrini h

where G(T) is the relaxation modulus and -n(X.T) is the shear strain in the

matrix. In order to decouple the system of eqns (1) and (2) in Un and Vn we

approximately take Vn - 5 (U - Un)/Hf by neglecting the term Xn(Vnl + V')/2

(ERINGEN and KIM, 1974), in which case (4) reduces to

3n = L G(T-S) n 8 - (T-S)dS (5)

We nondimensionalize the time variable by dividing T by some
characteristic time T of the matrix material, to be found by creep

experiments, so that t E T/T0. We also define a normalized relaxation modulus
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%(t) E C(tT0 )/Go . where C0 is the instantaneous elastic shear modulus of the

matrix material. (In this work lower case letters and script letters, except
for the script letter Tn used to denote dimensional shear stress, denote

dimensionless quantities, while upper case letters stand for dimensional
quantities.)

If we introduce the integral operator I so that its action on a function
f(r) is given by

rt$ <f> a f (t-if) y d- . (6)

substitution of (3) and (5) into (1), upon using (6), yields second order
differential-difference equations for the determination of U . namely

n

AEHf 2U

GQBf aX2 n+1 n n-I

If the solution to (7) can be found, substitution of Un into (5) yields the

shear stresses T5n and hence eqns (2) can be solved for V n . V can be easily

determined if a linearly elastic constitutive model is selected for the normal

stresses in the matrix perpendicular to the fiber direction, i.e., in = E(V -

Vn I)/Hf (Em is the effective Young's modulus for the matrix). If we use a

linear viscoelastic model for the normal stresses, the Laplace transform method

can be used to render eqns (2) algebraic in V , the Laplace transformed

displacement V n . The decoupling of the vertical and horizontal displacements

allows us to consider only eqns (7) in our solution procedure.
X and Un are normalized so that the field equations and the boundary and

initial conditions are independent of the material parameters. If we select x

E X/X0 - X/4AEHf/GB and un(x.t) a U (XT)/JP2Hf/ oAEB eqns (7) become0 f f f e ( beom

a2U

x2 + <Un+l 2u n+ unl> = 0 < n <

The boundary conditions are given by

aun =1 . -0< n < , x- . t > 0. (9a)
OuX

n
-= 0 , -N n N , x = , t > , (9b)

un =0 . < n <-N N<n < x=O t>O (9c)
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while the initial conditions are

un =x . -0 < n < .. x . t = 0 (10)

In order to avoid unbounded displacement fields in the analysis, we perform the S
transformation

Wn = Un -x , (11)

which, after its substitution into eqns (8), (9) and (10), results in the
following field equations, boundary and intital conditions:

C12W
n + Jwn+I - 2wn +w >n-1>  0 - (n < - (12)

8w

- 0 -< n < x -t > 0 (13a)

8 'w
nx -N n N . x = 0 , t > 0 , (13b)

w =0 < n < -N N < n < . x =0 t > 0 (13c)

w =0 - < n < , x 0 t =0 (14)

Notice that the field equations remain unchanged in form. This is because the
transformation (11) is a time independent translation. The change in the
boundary conditions has altered the original problem into a new one, in which
there are no loads at infinity and there are only compressive loads applied on
the broken fibers suddenly at t = 0, which open up the breaks as t grows.

The above equations can be solved by using Laplace transforms. The

Laplace transform of <wn > is given by the convolution law L('<w n>) = si(s)

w (XS) . where (S(s) and wn(Xs) are the Laplace transforms of §(t) and

w n(x,t) . respectively. The Laplace transforms of (12) and (13). upon using

(14), become

2wnCx-s) + sI(s)[- s) + -- (x s)] = 0. - <n< , (15)

_P_x___ - 2w(x' s n-1

n 0 < n < x (16)

-
Oxn 1 -N n N x =0 (17a)
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w= 0 , , N < n , x = 0 (17b)

We have thus transformed the original viscoelastic problem into an elastic
shear-lag problem (correspondence principle, CHRISTENSEN. 1982). We will
follow here the methodology presented by ERINGEN and KIM (1974) and used also
by GOREE and GROSS (1979) for the solution of the elastic shear-lag problem.
which is a dual integral equations technique. However, one can also use the
influence function technique developed by HEDGEPETH (1961).

We reduce eqns (15) to a single differential equation by introducing the

finite cosine transform (CHURCHILL, 1972). Define w by

w = w n cos(ne) o < 0 < (18a)

with the inversion formula given by

w =n r w cos(nO) dO (18b)

where w ;(xsO). w Ewn(xs). By summing eqns (15) with n running from-

to . after having multiplied them by cos(nO). and by taking into account the

symmetry wn(xs) = wn(xs), it is found that w satisfies

-8w 4s%(s) sin (0/2) w = 0 (19)

The resulting simplification in the field equations has shifted the difficulty
into the boundary conditions, which turn out to be integral equations, namely

r'i0= ,x- (20)

f w c o s (nO)) d9 = 0 ,N < n < co . x = 0 (21b)

A solution to (19) that satisfies the boundary condition (20) is given by

w = f(s,6) exp[-2sin(0/2) x'sW(s) ] (22)'p.'

for some f(s,6). Substitution of (22) into (21a) and (21b) yields the
conditions

93

10'V



NOIWWW3LM ,.".-= : , VVUV wuw : L M , %.Z I FUW. =- rV- ,

f f(s) sin(e/2) cos(n) d= 1 , 0 n N .(23a)
0 2s4I sW(s

f f(s.e) cos(nG) de = 0 . N < n < , 
(23b)

N
for f(s.e). By letting f(s.0) M I aM(s) cos(mG). the conditions (23a) for the

broken fibers reduce to

N I
I aM(s))sin(0/2)cos(nO)cos(mO)d= ,0 n N, (24)
n=O 0o 2sJsW(s)

while conditions (23b) for the unbroken fibers are satisfied identically. The
complete satisfaction of the boundary conditions reduces then to the solution
of the algebraic sustem (24) of (N+l) equations, for the determination of the
(N+1) unknown functions aM(s), m = 0,1,2,...,N. The solution to the

transformed problem is found by substituting w from (22) into (18b) and is
given by the following expression:

N
w (x.s) = I a M s "ep-sn0247f~)x] cos(mG)cos(nO)dO .(25)

M=o 0

The inversion of the Laplace transforms of w will result in wn (x,t). The

difficulty of the inversion will mainly depend on the selection of the

constitutive model (i.e., 78(s)) for the viscoelastic matrix.
A clarifying remark regarding the number of broken fibers is mentioned at

this point. We have assumed that the number of breaks is an odd integer,
namely 2N+l, and as a consequence we have used the finite cosine transform

(18), taking into account the symmetry of wn about x axis. We could easily

model any number of breaks by using the finite exponential transform
(CHURCHILL. 1972). which is given by

wx,s,8) = n (x,s) exp(in8) . (18c)

Wn(X ,S) = fv(x,s,O) exp(-inG) d9 , (18d)

and reduces to the finite cosine transform whenever wn = w-n , or w is symmetric

N
in 9. The only change in the previous analysis is that now f(s.6) = am (s)-

exp(-imO), where the total number of breaks is (M+N+l) and the algebraic system
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(24) involves (N+N+l) unknown functions am(S).

The Important quantities In the analysis of shear-lag models are the
overloads In the fibers near breaks and the shear stresses in the matrix. The
nondimensional loads in the fibers, defined by p n(x.t) a Pn(XX0 ,tT0 )/P.', can be

found by substituting wn(X.t) from (25) into (3) upon using (11). and they are

given by

P ')-Ow (x,t)
Pn( n 0 (26)

The normalized shear stresses T (X.t) T (xX,tT0)/JP2G0/AEBfHf between then n OWO ff

n t h and the (n-l) t h fibers are evaluated by substitution of W n(X.T) into (5)
(which upon using (11) yields the normalization), and they are given by

Tn (Xt) = t (T-C) a dC , n 1 (27)

Another useful quantity, especially for statistical models of failure of
composites (PHOENIX and TIERNEY, 1983), is the effective load transfer length
Lf. which for present purposes is defined as the distance from the breaks in

the x direction, within which the overload of the first unbroken fiber has
dropped to zero. Since in the shear-lag model the load PN+I1 of the first

intact fiber actually descends to values below P, before it decays

exponentially to P. as x - , we define Lf as the distance from the breaks at

which PN+l crosses P.. In this case Lf or equivalently the normalized

effective load transfer length l£ = Lf/ AEHf/GoBf must satisfy the conditions

pN+l(lft)1 , or aN@lf t) =0 (28)

In general. 1 f will depend on time because PN+l depends on time. The so defined

If becomes a characteristic length for the whole laminate for a given number of

breaks (2N+1).
We summarize the results of this section by giving explicit evaluations

for the various quantities. If we define bm a am(s ) 2sJsl(s), then bm are

determined by solving the algebraic system

N
b sn(G/2)cos(n8)cos(m8)d9 = 1 0 n < N (29)

m=O 0

which is independent of s. Eqns (25),(26) and (27) reduce to
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en(xt) =1..-2sin /2), s W(s) x]/(2sJs (s)))m=O m0

• cos(mO)cos(nO)dO , (30)

-|-t =o- b f {exp[_2sin(0/2)JsW(s)
(=_ nX t) = 1 b, x)/s}

sin(0/2)cos(mO)cos(nO)dO (31)

N -
(xt)= I JoL-{exp[-2sin0/2)4s;W(s) x] 4si(s)/2s}

cos(me)[cos(nO) - cos((n-1)e)]dG (32)

where

f(t) = L- I[T(s)] - rlir exp(ts)f(s)ds t > 0 (33)2wi f

2. POWER-LAW CREEP COMPLIANCE MODEL FOR THE MATRIX MATERIAL

A useful model that describes closely the viscoelastic properties of
commercially used matrix materials (epoxy thermosetting resins) is a power-law
creep compliance model that can be expressed in the form

J(T) = Ja 1+ T a + ta - (34)

0

Here JO characterizes the instantaneous elastic response of the matrix material

under loading and To and a are material constants that describe the creep

behavior under dead loading. The characteristic time To is the time required

for the initial displacement to be doubled, while the exponent a is usually
much smaller than unity. The limit a -* 0 corresponds to the elastic case,
while a -* I gives a linear time dependence which is equivalent to the Maxwell
viscoelastic model. The connection between the relaxation modulus %(t) and the
creep compliance $(t) is expressed through the Laplace transformed quantities
(CHRISTENSEN, 1982) by the well-known formula

%(s) $(s) s2 = 1 (35)

if Go = 1/J O . From (34) and (35) the Laplace transform of the relaxation

modulus is found to be

a
s %(s) as (36)

s + r(a+l)
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By inserting (36) into (30).(31) and (32) it is possible to obtain
explicit evaluations for w n , Pn and Tn in terms of x and t for different values

of a. The inversion of the Laplace transforms has been done by contour
integration. We will only report the solution here for the fiber loads and the
shear stresses, while the displacement fields can be obtained by integrating
(26). The fiber loads and the shear stresses are found to be

N T

Ph(.t) = I - I bf h(x.t.,) cos(mO) cos(nO) sin(e/2) dO (37)
0 n0

N T

T n(x.t)= i bm f g(x,t.6) cos(mO)Ccos(nO) - cos(n-1)G)JdO , (38)
m=om 0

where the functions h(x.t,6) and g(x,t,O) are given by

h(xt,G) = 1 - ;fexp(-tr) exp[_XL- Cos(--.) sin[xjr

0

- sin( "-I)1!k. (39)

g(x.t.0) = fexp(-tr) exp[XJ a cos(-a=)J sin[ rla sin( =±)

0

(C!L±jr dr (40)

The quantities X, p and f have the following evaluations:

X = 2 sin(0/2) x , (41)

p = J[ra cos(ar) + r(a+l)]2 + Era sin(ar)]2  . (42)

f =tanI a r asin(rir) I - 0 .<i (43)
L r cos(a) + r(a+l)

Numerical integration of the above formulae has been carried out for both
Pn and T n even though they are related through (1). The reason for this is

that pn is usually the quantity of primary interest and the numerical evaluaton

of T n from Pn involves differentiaton which should be avoided. Numerical

integration has been done by using a midpoint Romberg integration technique,
with an appropriate change of variables at the singular points of the
integrands. The results are plotted in Figs 3. 4, 5 and 6. for one and three
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broken fibers and for the first and second intact fibers for various times (a =
0.1 for all cases).

From Figs 3 and 4 we notice that at x = 0 we recover the overload
coefficients (Pn(x=O.t)/P. a pn (x=Ot)) in accordance with the elastic solution

of HEDGEPETH (1961). The overload coefficient of the first intact fiber in a
laminate with N neighboring breaks as calculated by Hedgepeth is given by

K 4 e6.8 * 8 * (2N + 4) 0, ON m (44)
N-3 9 5 * 7 9 *,* (2N +. 3)

The above formula holds for the viscoelastic case as well because the overall
static equilibrium of the composite is not affected by the viscoelastic
properties of the matrix material. This is because the matrix material cannot
sustain normal loads in the x direction and there is no stress relaxation in
the fibers as they are assumed to be elastic. Therefore, the excess load
caused by the simultaneous breaks has to be shared by the neighboring intact
fibers and only the stress distributions are affected by the viscoelastic
properties of the matrix material.

Several observations can be drawn from Figs 3 and 4. The slope of the
stress distribution in the fibers decreases as time increases, resulting in a
growth of the effective load transfer length If with time (Figs 3a, 4a). The

overload undershoots and actually becomes negative before it decays to zero as
x -* - for the intact fibers. Global equilibrium of the composite in the x
direction implies that l[pn(x.t) - 1] = 0. with summation extending to all

fibers. Since the negative overloads in the broken fibers grow with time, as a
result of the shear stress relaxation in the matrix, the positive overloads in
the intact fibers increase with time for fixed x, so that global equilibrium is
satisfied (see Figs 3 and 4). This implies that the probability of failure for
the intact fibers near breaks increases with time. The length over which this
increased probability occurs also grows with time, this being the effective
load transfer length 1If.

The relaxation of the shear stresses in the matrix can be seen in Figs 5
and 6. The shear-lag model gives inaccurate results for the shear stresses
near the breaks (whithin one or two fiber diameters). The shear stresses in
the matrix should go to zero at the break points and this is clearly violated
according to the numerical results in Figs 5a and 6a. Modifications, like for
example the correction in the calculation of the shear strain introduced by
ERINGEN and KIM (1974), are consistent with continuum mechanics but in reality
they are not accurate either. The reason for this is that debonding in the
fiber-matrix interface near the breaks usually occurs due to the high stress
concentrations there. This changes drastically the geometry in a small
neighborhood around the breaks, and leads to additional plastic deformations in
the matrix. Nevertheless, finite element results for the elastic shear-lag
model (REEDY, 1984) indicate that the shear-lag model predicts correctly the
stress concentrations in the intact fibers. Even though it is an approximate
model, the shear-lag model for the viscoelastic case unravels the trend in the 4
time dependence of the stress fields near broken fibers. Note that since the
fibers are much stiffer than the matrix (Z100). the region in which the
stresses are perturbed due to fiber breaks is 50 or more fiber diameters, while
the shear-lag analysis fails to predict correctly the shear stresses in a small
region of one or two fiber diameters away from the breaks.

ACNOWLEDGEMENTS

The support of the U. S. Army Research Office through the Mathematical Sciences
Institute of Cornell University is gratefully acknowledged.

98

I% Z'.lw%



REFERENCES

I. CARRIER. G.F and M. KROOK and C.E. PEARSON, Functions of a Complex
Variable, McGraw-Hill, New York (1966).

2. CHRISTENSEN, R.M., Theory of Viscoelasticity, Academic Press, New York
(1971).

3. CIURCHILL, R. V., Operational Mathematics,. 2nd Edn, McGraw-Hill, Tokyo
(1972).

4. ERINGEN, A.C. and B.S. KIM, Stress concentration in filamentary composites
with broken fibers, Letters in Applied and Enaineerinz Sciences 2, 69-89
(1974).

5. FICHTER, W.B., Stress concentration around broken filaments in a
filament-stiffened sheet, NASA TN D-5453, Langley Research Center (1969).

6. FICHTER, W.B.. Stress concentrations in filament-stiffened sheets of
finite length, NASA tn D-5947, Langley Research Center (1970).

7. GOREE, J.G. and R.S. GROSS, Analysis of a unidirectional composite
containing broken fibers and matrix damage, Engineering Fracture Mechanics
13, 563-578 (1979).

8. GOREE. J.G. and R.S. GROSS. Stresses in a three-dimensional unidirectional
composite containing broken fibers, Engineering Fracture Mechanics 13,
395-405 (1980).

9. HEDGEPETH. J.. Stress concentrations in filamentary structures. NASA TN
D-82, Langley Research Center (1961).

10. HEDGEPETH, J. and P. VAN DYKE. Local stress concentrations in imperfect
filamentary composite materials. J. Composite Materials 1, 294-309
(1967).

11. LIFSHITZ, J.M. and A. ROTEM, Time-dependend longitudinal strength of
unidirectional fibrous composites, Fibre Science and Technology 3. 1-20
(1970).

12. PHOENIX, S.L. and L-J. TIERNEY. A statistical model for the time dependent
failure of unidirectional composite materials under local elastic load-
sharing among fibers, Engineering Fracture Mechanics 18, 193-215 (1983).

13. POMEROY, C.D. (Editor), Creep of engineering materials. J. Strain Analysis
Monograph. I. Mech. E. (1978)

14. REEDY, E.D., Jr., Fiber stresses in a cracked monolayer: comparison of
shear-lag and 3-D finite element predictions, J. Composite Materials 18,
595-607 (1984).

15. VAN DYKE, P. and J.M. HEDGEPETH, Stress concentrations from single-
filament failures in composite materials, Textile Research Journal 39.
618-626 (1969).

99

42 %*~, . - ~ ~~- ;



- B ___-__ __ __ __ _

Hwn~~ IRnkt~ 00W vwin

F @ ........................................................................... _P
......... , ...... ........ ......... °. °........ .......... 0. .°.... ... ....... .0

°°o° °..°°°o° °°.° ~ o°° °o° . ° °°°° °°°° oo°° o°° .°° ° ° ° ............. °0 r.-v0NP

Fig. 1. A unidirectional composite with an infinite number of parallel fibers
loaded in tension uniformly, with (2N+l) broken fibers along Y axis.
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Fig. 2. Equilibrium of an infinitesimal element of the nth fiber with its
surrounding matrix.
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ELEMENT LEVEL ELIMINATION OF NONLINEAR CONSTRAINTS

IN TOTAL LAGRANGIAN FINITE ELEMENT FORMULATIONS

A. R. Johnson and.C. J. Quigley

Mechanics and Structures Division

U.S. Army Materials Technology Laboratory

Watertown, MA 02172-0001 USA

SUMMARY

Nonlinear constraints in elastic finite deformation theory can be enforced by
an iterative element level variable elimination method which takes advantage
of the finite element discretization. A Lagrangian potential energy method is
used and load steps are taken small enough so that the potential energy is
nearly quadratic when expanded as a function of displacement increments. The
Newton - Raphson method is used to find minimal locations. Element gradient
and tangent matricies are computed and modified to be consistent with an
incremental representation of the nonlinear constraint. This iterative
variable elimination method is used to determine the solutions to the bending
of an elastica around an ellipse for aspect ratios of 0.75, 1.00 and 1.50.
Two exterior methods are also used to solve these problems for comparison.
The Lagrange multiplier method (ABAQUS code) and a penalty method are used.
The results obtained using the element level elimination method are compared
to the results obtained using ABAQUS and the penalty method.
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INTRODUCTION

Many problems in solid and fluid mechanics involve finding either a minimum
or stationary value of an energy functional such that an additional
constraint equation remains valid. Frictionless contact problems which
involve large elastic deformations and curved rigid contact surfaces are
considered here. Applications include contact between long thin metal or
paper items being passed through channels and rigid smooth surfaced indentors
penetrating rubberlike solids. When these problems are formulated using the
finite element method the enforcement of the constraint equations
(description of the contact surface) is usually the cause of difficulties.
The minimization problem is often modified by attaching the constraint
equations using either the Lagrange multiplier technique or a penalty method.
When the minimization problem is quadratic in the displacement variables and
the constraint equations are linear, elimination methods are often used. This
suggests that when the nonlinear minimization problem can be made nearly
quadratic an elimination method may be possible. An appropriate
representation of the nonlinear constraints is necessary which will allow
variables to be eliminated from the minimization problem and approximately
incorporate the constraint. We briefly describe the nonlinear minimization
problem associated with the large deformations of a cantilever beam, the
'elastica'. The minimization problem is then modified by attaching the
constraint that the elastica bend around a rigid frictionless elliptical
surface. General methods for solving this constrained minimization problem
are reviewed to provide background and to provide methods to compare to the
element level elimination method proposed here.

Finite element formulations for large deformations of beams exist in
several forms[l-5]. We selected Fried's[3] formulation since it is presented
as a nonlinear minimization problem in terms of configuration variables.
Contact surfaces can be described in terms of these variables. Also, the
nonlinear 'B23' element in the ABAQUS[5] code can model the same problem
allowing for independent comparisons. Analytical solutions are not available.
The nonlinear programming problem which we are concerned with can be
presented as follows:

Minimize: f({u}) ; {u)C RN (1)

Such that: g ({u) ? 0 j - 1,...

where (u) - the global set of nodal variables,
f({u)) - a nonquadratic potential energy function,

and g4({ul) " a differentiable function describing the j'th contact
surface.

Frictionless nonlinear contact problems can be represented by equation (1). A
large amount of information is available on methods for treating these
problems. We present a brief summary of several methods used so that they can
be compared to the iterative element level elimination method.

Lagrange multipliers are used to attach the constraint equation to the
function being minimized[5-13]. Although this method is not attractive from a
theoretical point of view, since it introduces possible saddle points, it has

112



found widespread use because the Lagrange multipliers represent contact
pressures. This method solves the nonlinear programing problem described by
equation (1) by formulating it as follows.

J

Stationary points: f(u}) + AJg ; {u,X)C RN+ J  (2)

i-=

where Xj = J'th Lagrange multiplier.

There are many methods used to construct representations like equations (2)
and to solve them. The paper by Simo, Wriggers and Taylor[ll] describes the
Lagrange multiplier method in detail and introduces a perturbed form which is
a mixed penalty / Lagrange multiplier method.

The penalty method[6,14-18] also attaches the constraint equations to
the function being minimized. In doing so, it maintains a minimization
problem. No variables are added to the analysis set but the large penalty
parameters needed can cause ill - conditioning of the modified function's
tangent matrix. The problem given by equation (1) is solved using the penalty
method as follows.

J

Minimize: f'({u)) - f((u)) + 2 gj ; {ulcRN (3)

J-1

where I W j'th large constant which may depend on the tangent
matrix of f({u}). (See references 17,18).

Nonlinear programming problems can sometimes be made to look like a
quadratic programming problem if sucessive trial vectors {u} are sufficiently
close[19,20]. If, in addition, the constraint equations can be linearized,
then the revised simplex method method for quadratic programming can be used
in an iterative scheme to solve equation (1)[19-21]. In this case the problem
is formulated as follows.

> Minimize: f'((u}) = {ulTfK ) -o

2et {uo  0 (u)

Such that: [AI{x) - {b} Z 0

Set: (u ) (u)

Repeat until contact set, {x}, does not change,
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where [KI-af
2a{u}

(u°)

o 0 0)(Po0}T -{uo})T [Ko].

[A]{x) - (b) - the linearization of equations gj, in (1)

(x) C (u is a trial set of variables in the contact set,

(u) - a trial vector near (u ),

and {u 0 a vector which minimizes f({u}) but does not satisfy
the constraints.

This method can be useful when the functions (f,g ) can each be expanded in a
Taylor series and when small changes in the const4 aint set are expected.

A less often used method of enforcing constraints during minimization is
to solve the J constraint equations for the relations for J variables (in
terms of the remaining N-J variables). The relations are then substituted
into the function being minimized. That is, they are eliminated[6]. This
yields an unconstrained minimization problem. The method is given as follows.

Solve equations gj((u}) - 0 J- 1,...j

and get x - F ({v) j- 1...J (5)

where (v) C RNJ
Substitute (5) into (1) to obtain the unconstrained minimization
problem.
Minimize: f({v)) ; i C RNJ (6)

We have intentionally presented elementary descriptions of the above
methods so that the relationship between these methods and the element level
elimination proposed here can be easily identified.

ELEMENT LEVEL ELIMINATION METHOD

The elimination method (eqns 5,6) is typically not used when the
constraints are nonlinear since it is difficult to determine the functions
F i(v) given by equation (5). Also, when the minimization problem involves
many variables, as in a finite element problem, it is difficult to automate a
nonlinear elimination method. The method we propose here avoids the
difficulties associated with determining equation (5) by working with the
derivatives of the constraint equations. We return to solving equation (1)
with {u) equal to the vector of element nodal variables. Expanding (1) in a
Taylor series we have:

f(u)) - f(uod + (au))

=f + B)T{au) + _ (AuT[K](Au) + ... (7)
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where (u) - a vector "near" {u ) which is closer to the minimum,

(U )the current location

(Au) = (u) - (U 0)

{g ) -
0 8{u)

[Ko 0 2 f 2{u2 U)

Since f is derived from an energy principle and has been discretized by the
finite element method, we can express equation (7) as

f(u) ( +(S) (u +1L (AU )T K IIA (8)e eo e 2 Ue oe e(u .

e

Assuming the constraint equations in (1) are differentiable we have

dgj - 0 (9)

For simplicity we assume one constraint equation (i.e. J-1)
Then, we can write (9) as

dx. - 0 (10)1

where {x} C (u)

For small displacement increments

, ag
ax Ax - 0 (11)

Solving (11) for a displacement increment Ax. in the set (x} we have

11

Axt 11 ax i (12)
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This suggests that we can eliminate Ax in favor of g({x)) equal to zero at
the element level. That is,

(Au } - [A e]{u er (13)

for an element

where (Ae3 - [A e({ue)]

(Uer} - (Aue } - (Axi)

Thus, [A ] represents a constraint matrix which depends on the displacements
and (Au e) the reduced set of element variables. Substituting (13) into (8)
we haveer

f({u d) ((fee + {geo T[Ae]{Auer) +

(14)

1 (u)T [AIT [K [A]{(Au)+
2  AUer [Ae][Koe e er

In equation (14) we identify the reduced element gradient and tangent
matrices as

{ }er [Ae]T geo} (15)
and [K er [Ae I T[eo][Ae

Global gradient and tangent matrices can now be assembled in the standard way
for the "reduced incremental variable set". The Newton - Raphson method is
then used to find (u). The Z norm of the reduced gradient is checked at the
new location. If not zero 1hen (u) is set to {u ) and the process is
repeated. It should be noted that the x L associated with the eliminated Ax .
must be updated by solving a one dimensional nonlinear equation obtained from
the constraint equation at each iteration.

A rule must be made for determining when a variable which is a member of
the constrained set must be released. That is, when should a point in the
contact set be released? We can write

8f f f]fT
Af - Au + LL Au + .. + L- Au -[i(u (16)1u au 2 au nu1  2 n

where u. C (u)
1

which simply states that {g) contains information on how f({u)) changes with
respect to {u). If we consider changes in one variable at a time we obtain 0

-- > 0 > negative Au. decreases f
u. 1

1

and f < 0 > positive Au. decreases fau.11
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The rule can then be stated as:

RELEASE RULE: d 
Find the directioa to decrease the energy. Assume it is Au d

Then, if u + Au does not satisfy the constraint equation, keep
ui in the onstrlined set. Otherwise, release it.

In the case of two dimensional contact with physical variables x and y at the
nodes and corresponding unit vectors 1,3 the release rule can be simplified
as follows, see Figure 1.

af I~ + Yi--
xiy i ax ayi

- gradient terms for node i
(18)

- unit normal to contact surface

and g " n
x iy i

Then, the release rule for two - dimensional contact, with (x,y) nodal

variables, becomes:

RELEASE RULE FOR TWO - DIMENSIONAL CONTACT

If a > 0 Keep in constraint set.
If a < 0 Release from constraint set.

We note that4a equals the component of generalized force outward from the
surface and gxvy equals the contact force.

ELASTICA BENDING AROUND AN ELLIPSE

We selected the problem of an elastica bending around an ellipse, as
shown in Figure 2, to demonstrate the element level elimination algorithm.
The aspect ratio, a, is varied to obtain different contact problems. If "a"
is large then the contact region changes rapidly with a small change in load,
P. When "a" is small a large load is needed for initial contact and the
contact region changes more slowly with increasing load P. Contact solutions
were obtained for aspect ratios of 0.75, 1.00 and 1.50. Here, we present some
details on how the solutions were obtained. First we show the ABAQUS solution
(Lagrange multiplier method), second a penalty method and third the element
level elimination algorithm.

For all solution methods, the elastica was of length v. One end of the
elastica was fixed at the origin and a vertical load P was applied to the
other end. For each aspect ratio of the ellipse, the load history used is
sumimarized in Table 1. Young's modulus was one and Poisson's ratio was zero.
To approximate an inextensible elastica, a ratio of the cross sectional area
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to the moment of inertia equal to 10 was selected[19,20]. The elastica was
discretized into forty elements. Two noded beam elements with cubic
interpolation functions were chosen to model the elastica. For the element
level elimination method and the penalty method a beam element developed by
Fried(8] was used. Each node has four degrees of freedom, see Figure 3. In
this element the axial strain is based on the definition of engineering
strain. For the Lagrangian multiplier method a beam element ('B23' element)
with three degrees of freedom per node was selected in ABAQUS. A Lagrangian
axial strain is used in this element formulation.

Lagrange Multiplier Method

To solve the problem of an elastica bending around an ellipse using the
Lagrange multiplier method, the finite element code ABAQUS was used. A two
noded planar interface element (IRS21' element) was chosen to detect contact
between the beam element and the rigid surface or ellipse. This contact
element enforces a linear pressure distribution between nodes and has
integration points at the nodes. The material properties cited above were
input using the 'general beam section' option. Tolerances were set at 0.4% of
the applied load and at one percent of the moment. Smaller tolerances did not
change the ABAQUS finite element solution. The ellipse was defined by the
user subroutine RSURFU. At each integration point of the planar interface
element, the penetration distance into the ellipse is calculated. To do this
the coordinates of the point on the ellipse closest to the integration point
must be found. The direction cosines of the tangent and the rate of change of
the tangent along the surface at this point on the ellipse are also
determined.

To find the point on the ellipse closest to a given point along the
elastica, the Newton - Raphson method was used. Given the equation for a
point (x,y) on the ellipse, we need to minimize the distance between the
point (x,y) and the integration point(x ,y ) along the elastica. This can be
done using the same elimination method we use to define surface contact. We
proceed as follows.

)2 . 2
Minimize: U - (x -x) + (y -y (distance) (19)0 02

Given: fVx) - x + (y + 1) 2 1 (constraint equation) (20)2
a

Reduce the variables (x,y) to x using the constraint equation.

ayx AX (21)

From Ar 1X (22)

a (y + 1)]

That is, we have {au) - I]Au r in (22).
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Using equation (19), the gradient and tangent stiffness matrices are derived.

2(x - x )

{g) J
2(y - y0)

(23)

[] [ 0  2

Next we solve for the reduced gradient and tangent stiffness matrices.

(gr} r [A] T{g}

2x(y - yo)

-2(x - x ) + 
2 (y )

0 a 2(y + I

[Kr] [A]T[KI[A] (24)

-2+ 
2x

2

=22
a (y + 1)

Applying the Newton - Raphson method to solve (24) using an initial guess for
(x1 ,y1 ) yields

(x2) = {x1 } - [Kr(X) '{gr (x ))

(25)

or, here (x( 1  - yo)

(x- x o) 02(y+x2 =x 1 - a2(Y +1)

x

a + 11 + a4(y1 + 1)2

To update the y coordinate, we use the constraint equation. That is,

2Y2 1 + I- 2 (26)

a

This process is repeated until the reduced gradient approaches zero.
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For an initial guess the principle of similar triangles was used, refer to
Figure 4.

K0X 1 --
1 R

(27)

y - 1 - ] 1/2

where R - the length of the segment OX

Once the point (x,y) on the ellipse closest to the integration point on the
elastica is located the direction cosines of the unit tangent t at this point
are:

a2(y + 1) 1- x (28)

(a 4(y + 1)2 + x2 ) 1/2

The rate of change of the tangent along the ellipse can be expressed in terms
of the curvature K and the normal to the ellipse at the point (x,y).

dt = I (29)

ds

where 2 3 2 13/21a2(y + 1)31 1 + x4 y 1)2J

x + a2 (y + 1)3
(a4(y + 1)2 + x2) 1/2

Penalty Method

To obtain a penalty solution we selected a penalty term which would add
the square of the minimum distance to the contact distance to the potential
energy. This is one of many possible variations of equation (3). The
constraint equation (20) enters indirectly when the location of the minimal
distance point on the surface is determined. Thus we satisfy the constraint
in a least squares sense by minimizing the distance between the node (XnYn)
and the ellipse. That is, minimize .
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fg(( x + (((Yn 2 (30)
e e np n e + Ye)

where Ynp m CnknnlOP - the n'th penalty parameter

p - a variable for convergence studies

11 if one or no adjacent nodes have violated the
constraint equation

n

1 if both adjacent nodes have violated the constraint
equation

k - the diagonal term from the tangent stiffness matrixnn associated with the x displacement
n

(xYe ) the point on the ellipse closest to the node (x nyn ) on
the elastica. This point is found using the solution
method described in the previous section.

The computation of the element gradient and tangent stiffness matrices are
shown below.

an
{g' e

ee

Tu e}

we + an e f an } (31)

wee -e 2(x -X) (in row for x)n

an'
e 2(y Y(in row for yay "n 0n

n~n

e a~u 2
e
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2, 2,
[ke,1- [k]+ e + [ __e (32)

x 2n y n2 n

where

a 211 a 211
-e e)' 2 (in both (x ,x ) and (yY) locations)ax Xn 2 Y n 2 P n

The global gradient and tangent stiffness matrices are then assembled in the
usual manner. The Newton - Raphson method is applied to minimize the global
form of equation (30). To study convergence, the analysis was completed with
values of 10 equal to 10E-5, 10E-2, and 1OE-I.

Element Level Elimination

For this method, we need to define the matrix (A ] from equation (13).
From the constraint equation (20) we can compute Ay in terms of Ax.

Ay x Ax F(x) Ax (33)a2(y+1)

Thus, when a node on the elastica is in the contact set we can compute the
element energy gradient and tangent matrices for which the relation (33)
holds by using equation (15). After assembly, the number of variables in the
global gradient and tangent matrices will be reduced by the number of nodes
in the contact set.

When the node in contact is the first node along the element, [Ae
becomes:

1 0 0 0 0 0 0

0 1 0 0 0 0 0

F(x) 0 0 0 0 0 0

[Al- 0 0 1 0 0 0 0 (34)
e K

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
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where (Au o) T xi xi lx X 2' Y)

When the second node of the element is in contact the new [A ] can be readily
seen from equation (34). When both nodes of the element violite the
constraint, [Ae] reduces to:

1 0 0 0 0 0

0 1 0 0 0 0

1(x) 0 0 0 0 0

[A - 0 0 1 0 0 0 (35)

0 0 0 1 0 0

0 0 0 0 1 0

o 0 0 0 F(x) 0

o 0 0 0 0 1

and ( T {xl 1 il x 2 x2 i2)

The reduced element gradient and tangent matrices can then be computed using
equation (15).

RESULTS

To demonstrate the use of the element level elimination method, the problem
of an elastica bending around a frictionless rigid surface in the form of an
ellipse was solved. For comparison, this contact problem was also solved
using the Lagrange multiplier (ABAQUS) and penalty methods. Similar results
were obtained for all methods. The displacements both in the contact region
and at the tip were in good agreement.

A comparison of the deformed configuration of the elastica bending
around a circle (a-1.00, Figure 2), at a load of 0.55, shows close agreement
between the element level elimination and Lagrange multiplier methods, see
Table 2. The deformed configurations at loads of 0.60, 1.00, and 1.25 are
shown in Figure 5. The elastica first made contact with the circle at a load
of 0.55. The contact solutions do have some differences. The ABAQUS solution
and penalty solution show regional contact while the element level
elimination method shows point contact. When two nodes lie along the circle,
the elastica is in contact with the circle at some point between those nodes.
Thus, a solution with two nodes in contact implies point contact with the
rigid surface. The location of the contact surface on the circle vs load is
shown in Figure 6. The final node in contact at a given load is the same,
refer to Table 3. The regional solution obtained by ABAQUS and the penalty
method at a given load was also an iterative solution obtained by the element
level elimination method. By considering energy minimization and using the
Release Rule for Two - Dimensional Contact, the additional contact points
found by the other methods were released. These released points lie close to
the circle; the maximum distance between a node and the circle was 10E-5. The
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ABAQUS pressure forces for these additional nodes in contact were an order of
magnitude lower than the largest pressure force.

For aspect ratios of 0.75 and 1.50, the contact solution was identical
for all methods. (Refer to Tables 4 and 5.) The elastica makes initial
contact with the ellipse at a load of 1.70 and has regional contact when the
aspect ratio is 0.75. For an aspect ratio of 1.50, initial contact occurs at
a load of 0.17 and point contact results. Deformed configurations of the
elastica at various loads for the aspect ratios of 0.75 and 1.50 are shown in
Figure 8. A summary of the results for the element level elimination contact
solution is found in Figure 9.

Tables 3 through 5 also demonstrate the influence of the penalty
parameter on the contact solution. When the penalty parameter equals 10E-5,
the optimal solution is not obtained. The distance between the nodes in
contact and the ellipse is 10E-2. When the penalty term is increased, the
contact set becomes smaller and the distance bewteen the nodes in contact and
the ellipse is 10E-5. At higher values, though, problems with convergence and
"chattering", and oscillation between two different contact solutions was
observed.

SUMMARY

An element level elimination algorithm for the analysis of frictionless
geometrically nonlinear constraint problems was presented. This algorithm is
easy to implement within a finite element code. The release of a nodal
variable from the constraint set is based on energy minimization principles.
Ill - conditioning of the tangent stiffness matrix is avoided. To demonstrate
this algorithm, the problem of an inextensible elastica bending around an
ellipse was solved. For comparison, solutions to this problem were also
obtained using a penalty method and the Lagrange multiplier (ABAQUS) method.
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Table 1 Load History for Each Ellipse Aspect Ratio

Load Number Aspect Ratio of Ellipse

0.75 1.00 1.50

1 0.05 0.05 0.05
2 0.10 0.10 0.10
3 0.15 0.15 0.15

0.16
0.17

1.65 0.50 0.18
1.70 0.55
1.75 0.60

N 2.25 1.30 0.30

12E



Table 2 Deformed Configuration of the Elastica Bending Around a Circle
at a Load of 0.55 ( a - 1.00, Figure 2.)

Node Degree of Element Level ABAQUS
Freedom Elimination Solution

Solution

1 X 0.00 0.00
Y 0.00 0.00
e 0.00 0.00

2 x 7.84601E-2 7.84585E-2
(contact) Y -3.0827E-2 -3.0826E-2

0 -7.8116E-2 -7.8113E-2
3 X 0.15645 0.15645

Y -1.2168E-2 -1.2168E-2
O -0.1533 -0.1533

4 X 0.23357 0.23357
Y -2.6955E-2 -2.6955E-2
0 -0.2251 -0.2251

41 X 1.8571 1.8576
Y -2.287 -2.287
O -1.247 -1.247
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Table 3. Nodes in Contact vs Load for Circular Contact
Surface ( a - 1.00, Figure 2.)

Load Element Level Lagrange Multiplier Penalty Method**
Elimination Method

Method**

Iteration Nodes Iteration Nodes Penalty Nodes
Parameter

lop*

0.55 1 12 10E-5 2
2 2 1OE-2 2

lbE-i 2

0.60 1 2 1 1OE-5 2-5
2 2,3 2 1OE-2 2,3

3 2,3 lOE-1 2,3

0.65 1 2,3 1 10E-5 2-7
2 2-4 2 1OE-2 2-4
3 3,4 3 lbE-i 2-4

4 3,4

0.70 1 3,4 1 10E-5 2-8
2 3-5 2 4,5 1OE-2 3,4
3 2-5 lbE-i 4,5
4 2,4,5

0.75 1 4,5 1 2-5 lbE-S 2-9
10E-2
l% E-i 2,4,5

0.80 1 4,5 1 10E-5 2-10
2 4,5,7 2 lOE-2 2,4,5
3 3-5,7 3 1OE-1 2,5,6
4 3-7 4
5 3-6 5 2.5,6
6 3,5,6
7 2,3,5,6
8 2,5,6
9 5,6

*The entire penalty term is c k lOg, see eqn (30).
*The norm of the gradient was es than or equal to 1OE-8.
SConvergence of the Newton -Raphson soltuion was not obtained after 20
iterations.
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Table 4. Nodes in Contact vs Load for Elliptical Contact
Surface ( a - 0.75, Figure 2.)

Load Elememt Level Lagrange Multiplier Penalty Method**
Elimination Method

Method**

Iteration Nodes Iteration Nodes Penalty Nodes
Parameter

lop*

1.70 1 2 1 2 1E-5 2
1OE-2 2
lOE-1 2

1.75 1 2 1 2 1OE-5 2,3
1OE-2 2
10E-I 2

1.80 1 2 1 2 OE-5 2-4
1OE-2 2,3
1OE-I 2

1.85 1 2 1 2,3 10E-5 2-5
2 2,3 1OE-2 2,3

1OE-I 2,3

1.90 1 2,3 1 2,3 1OE-5 2-6

1OE-2 2,3
10E-I 2,3

1.95 1 2,3 1 203 bE-5 2-6
10E-2 2,3
1OE-1 2,3

2.00 1 2,3 1 2,3 10E-5 2-7
1OE-2 2-4

10E-l 2-4

2.05 1 2,3 1 1OE-5 2-8
2 2-4 2 2-4 1OE-2 2-4

10E-i 2-4

2.10 1 2-4 1 2-4 1OE-5 2-9
1OE-2
1OE-l 2-4

* The entire penalty term is c k lop, see eqn (30).

** The norm of the gradient wan Ynss than or equal to 10E-8.
* Convergence of the Newton - Raphson soltuion was not obtained after 20

iterations.
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Table 5. Nodes in Contact vs Load for Elliptical Contact
Surface ( a - 1.50, Figure 2.)

Load Elememt Level Lagrange Multiplier Penalty Method**

Elimination Method
Method**

Iteration Nodes Iteration Nodes Penalty Nodes
Parameter

lop*

0.17 1 5 1 10E-5 2-5
2 2,5 2 IOE-2 2,3
3 2,3,5 3 1OE-l 2,3
4 2-5 4
5 2-4 5 2,3
6 2,3

0.18 1 2,3 1 IOE-5 2-7
2 2-5 2 10E-2 3,4
3 2-4 3 1OE-1 3,4
4 3,4 4 3,4

0.19 1 3,4 1 1OE-5 2-8
2 3-5 2 10E-2 4,5
3 4,5 3 10E-1 4,5

4 4,5

0.20 1 4,5 1 l0E-5 2-9
2 4-6 2 1OE-2 5,6
3 5,6 3 5,6 10E-i 5,6

0.21 1 5,6 1 10E-5 2-10
2 6 2 6,7 1OE-2 6,7
3 6,7 lOE-I 6,7

0.22 1 6,7 1 6,7 10E-5 2-11
lOE-2 6,7
IOE-1 6,7

0.23 1 6,7 1 10E-5 2-11
2 7 2 7,8 1OE-2 7,8
3 7,9 I E-i *
4 7-9
5 7,8

*The entire penalty term is c nk Inlp see eqn (30).
** The norm of the gradient was ess than or equal to 10E-8.
*" Convergence of the Newton - Raphson soltuion was not obtained after 20

iterations.
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If a > 0 then releasing node increases energy
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If Kt < 0 then release.

If more than one point is in contact, then add or
release according to largest value of o.

Figure I Release rule for two dimensional contact
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Figure 2. The elastica bending around an elliptical rigid surface.
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Figure 4 Determination of (xl,y3,) using similar triangles
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P =1.25

P 1.00

-3.0 .,

Figurv 5 Deformed configuration of the elastica bending
around a circle.
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Figure 7. Deformed configuration cf the elasuca bending around
an ellipse, aspect ratio = 0.75.
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Figure 8 Deformed configuraton of the elasuca bending
an ellipse, aspect ratio = 1.50.
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Abstract. Penetration of a sharp object causes large concentrated deformations in an
elastomer solid. The nonlinear nearly incompressible elastic stress analysis of the solid
is done with quadratic triangular elements and displacements referring to an immovable
grid. A lower order triangular mesh for a linear thermal analysis is conveniently layed with
vertices at the displaced nodes. This gives rise to highly irregular grids of slender elements
near the point of maximum penetration. The condition of the global thermal (stiffness)
matrix is estimated in terms of the element geometry. It is concluded that no significant
decline in the condition of the matrix takes place inspite of the high deformation.

Introduction. To set up the finite element stiffness and mass matrices for plane thermal
analysis we need to evaluate

11=1 (u f u4)dzdy and 12 = J x udzdy (1)

over the typical triangular element A, for a linearly assumed temperature distribution u.
Consider A with three sides 11, ,12,13 and area A. If uT = (u1 , U2 , U 3 ) is the nodal unknowns
vector for A, then I and 12 becomes the quadratic form I, = uTkeue, with

ke= 1 J 1 2 -] +{21 L (2)1A 1 1

and 12 = UTM'U, with

me=6 2 J (3)

The matrices k, and m, are said to be the element stiffness and mass matrices, respectively.
Assembly of k, and m, over all Ne finite elements in the grid produces the correspond-

ing global matrices K and M in the manner

uTKu = _ u, , uTMu = T meue (4)
e e

where u is the global vector of nodal unknowns, and where e indicates summation over all
triangles.

With minimization undertaken under the constraints of the boundary conditions our
thermal problem is such that

Al = p, (h) = mnn u'KU > 0 (5)

U TMU>(5

where h is a linear measure of the element, and

limra,(h) = A, > 0 (6)
h--0

where A I is the fundamental eigenvalue of the problem describing differential operator. For
a reasonably fine mesh it is safe to assume A = ii.
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Actually, for a sufficiently fine mesh we may use the lumped element mass matrix 

m, = ^       1 (7) 

L    ^- 
instead of (3). 

We denote by Af and \% the smallest (1st) and largest (Nth) eigenvalues of K. With 
proper boundary conditions K is positive definite and we want to estimate its spectral 

condition num^ber 

C2{K) = ^ (8) 

as a function of the inherent and discretization parameters of the problem. 

Global bounds. From Rayleigh's theorem we have that 

Af < u'^Ku < Xji' 
(9) 

Af < u'^Mu < X^ 

if vTu = 1; while eq. (5) assures us that 

vT Mu 
> Aj (10) 

for an arbitrary vector v that satisfies the essential boundary conditions. 

If we choose u in eq. (10) so that u^Ku = Af, then we have from eq. (9) that 

Af > AiAf (11) 

On the other hand if we start with u^Kuju^Mu = Ai, then we obtain 

Af<A,A^ (12) 

or combined 
AiAf < Af <\,X^ (13) 

The usefulness of eq. (13) lies in the fact that M is positive definite with a spectral 
condition number that is independent of h. 

The bounds in (13) are most critical and to make them tightest we want A^/Af^ as 
close to 1 as possible. Thl.s can be achieved with a nonunijorm density distribution, and 

k^ j pu^dxdy.   [        pdxdy = 1 . p(x,y) > 0 (14) 

instead of (1). A variable density distribution affects Aj. that need be assessed for it. 
We shall not pursue this matter here as we shall see it not very essential to the present 

situation. 
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Element bounds. On matrices that are not diagonally dominant, and the high order
finite element and finite difference matrices are such, Gerschgorin's theorem fails at the
lower end of the eigenvalues spectrum. The eigenvalue bounds for the global stiffness matrix
are written here in terms of the eigenvalues of the element matrices. We shall show them
sharp and most convenient in the finite element analysis.

If u denotes the global unknown vector and u, the one for the typical eth element,
then

UTU < Ue ! UTUPma (15)

where P,,az denotes the maximum number of elements that share a common node. Six is
a typical value for p,ma in plane problems.

To write bounds on AK we choose a normalized u, UTU = 1, and such that

K = uTKu = , u~k~u, (16)

If ,A" denotes the largest eigenvalue of the positive semi definite, k,, then for any u,

tTku, :,.,,e,, (17)

and eq. (16) yields with it

AK < max(Ak) E uu j < p na(A') (18)

A lower bound on AK is obtained from AK > uTKu, 1TU = 1. Choosing u, = 0 at all
nodes except for u, that corresponds to the maximum eigenvalue of ke produces the desired
upper bound, and we have

rnaX(Ake) :5 AKI < Pma(Ae) (9m 1 (A In) 5 AxM < p.,o.( Me) (19)
--

Since the element stiffness matrix ke is usually only positive semi definite the bound

AK > min(Ake) (20)

where Ak is the lowest eigenvalue of k,, reduces to the trivial Am > 0. But the element
mass matrix me is positive definite, A'" > 0 for all e, and

1Am" > min(Al") (21)

is useful. ",
We combine eqs. (13), (19) and (21) to write
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Nearly collapsed triangles. The element stiffness matrix k, in eq. (2) is of rank two.
For u4 = (1,1, 1) we have UTkeu, = 0. To write the two nonzero eigenvalues of k, we
introduce the notation r, = 12/(2A), i = 1, 2.3, and have that)22, )2 r+ (rr3r2 (23)

2,3= !(r + r2 + r3 ± vlx(r - r2)2 + (r2 - r3)2 + (73 - 71)2)

To observe what happens to AK when elements collapse we consider the triangle in
Fig. 1, and readily compute for it

1 2(1 - cosy) (24)
2A - 12 sin7, r I = r2 sn ' r3  sin

Ify- 20, Ake = -y-, and
< AK <6S N (25)

while if -= 1800, Ake = 3(180 - -Y)-, and

3 < 8 < 1 (26)
180- -- -

From the lumped me in eq. (7) we derive

AM 1 min(A,) (27)

and consequently

> 5A, m in(A) (28)

which assures us that AK > 0 if A, > 0. But with a careful consideration of the specific
mesh we can do better than (28). Consider the mesh in Fig. 2 that includes one slender
element with area A,. As A, - 0 the mass of this element reduces to zero but because
it shares nodes with large elements A'd is nearly unaffected by a small A,. Actually. the
smallest mass is at point B.

Equation (22) guarantees that under the circumstances of Fig. 2, AK is not likely to
change much with A,. We shall be more specific about that in the next section.

Penetrated elastomer. Track pads that run over sharp objects suffer very large localized
deformations. Figure 3 shows the deformation of, an originally straight, cylinder ABCD
made of rubberlike material, as a result of point C penetrating the body along axis AC. ",
Elastic computation is done with quadratic elements and a nearly incompressible material.

First order triangular elements are judged adequate for a superposed thermal analysis
of the solid and for computational convenience the new mesh is drawn with vertices fixed
at the displaced nodes. The resulting triangular grid is shown in Fig. 3. Sharp elements
are created near point 4 prompting us to suspect a loss of conditioning. Notice that the
elastic deformation is nearly area preserving but each new individual triangle need not
have the same area.

143

... d I"
'e %J . e F . . . -,+ . . % +, % -# % =. .". . . " . .- ' .. " . . . . -



It is the theoretical and computational conclusion of this paper that the large defor-
mations and slender elements observed in Fig. 3 have only a marginal influence on the
condition of the global thermal matrix.

The dangerously collapsed triangles in Fig. 3 are with a small angle -Y and we have
from eq. (25) that .

1 <A< 6 (29)
sin -1 - N- sin -1

and A is nearly proportional to -y-12

We observe that the smallest mass is at point D, while the biggest mass is at the
interior points. Hence

A h2 2
I T and Am = h (30)

and we have from eq. (13) that

h 2
6< AK < AIM (31)

Consequently 1 36I
< C2 (K) : 6(2

Ah 2 sin- - A I h 2 siny (32)

The number A, is not known exactly, and under large deformations it is slightly displace-
ments dependent. To have an idea of what A1 can be we recall that for a unit square
membrane edge fixed A1 = 27r 2. But even without a numerical value for A1 , equation (32)
clearly tells us how the spectral condition number C2 (K) of the global thermal matrix K
depends on h and -y.

In the mesh of Fig. 3 the temperature is prescribed along AB and at point C. Using
conjugate gradients to minimize and maximize uTKu/uTu we compute

K = 0.0285, AK = 7.82. C 2(K) = 274

for the undeformed iae'h, and

AK A 0.0323K, AK 16.6, C2 (K) = 514

for the deformed mesh. In agreement with the theoretical prediction of eq. (31). Ap" is
nearly independent of the deformation.

About three significant digits are lost in the thermal finite element analysis of the
deformed body in Fig. 3, a wholly tolerable loss on computers that typically carry seven
digits in single precision and 16 in double.
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A SIMPLE ANALYSIS OF SWAGE AUTOFRETTAGE PROCESS

Peter C. T. Chen
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ABSTRACT. Many solutions have been reported for the hydraulic autofrettage
process. In this paper a simple analysis of the swage autofrettage process is

presented. The contact pressure at different locations is determined as a func-

tion of interference. The deformation and stress distribution during autofret-

tage is obtained. At the end of the autofrettage process, the permanent bore

enlargement and residual stresses are calculated. Numerical results are pre-
sented in graphical forms.

I. INTRODUCTION. To increase the maximum pressure a cylinder can contain
without plastic deformation and to enhance its fatigue life, residual stresses

are often produced in cylinders through autofrettage (1]. Many solutions have

been reported for the hydraulic autofrettage process (2-6]. The thick-walled

cylinders were subjected to uniform internal pressure of sufficient magnitude to

cause plastic deformation and then the pressure was removed.

A more economical way of producing residual stresses in thick-walled cylin-
ders is the swage autofrettage process. This process is carried out by a swage,

the diameter of which is greater than the inner diameter of the cylinder. This

swage is driven through the cylinder from one end to the other. A rigorous

analysis of this process is difficult. In this paper a simple analysis of the

swage autofrettage process is reported. The swage mandrel and the cylinder are
made of tungsten carbide and steel, respectively. A two-dimensional plane-

strain analysis is used to determine the contact pressure at different locations
of the cylinder as a function of interference. The deformation and stress

distribution during autofrettage are obtained. At the end of the autofrettage

process, the permanent bore enlargement and residual stresses are calculated.

II. ELASTIC SWAGING. The swage mandrel is assumed to be a short cylindri-
cal bar driven through a long thick-walled cylinder from one end to the other.

The diameter of the mandrel (2c) is a constant, but the inner and outer diam-

eters (2a and 2b) of the tube are variables. When the difference between c and

a is positive, we have interference I. For small values of interference, the

stress state in the swaging assembly is elastic. The stresses and displacement
in the tube are

r [p aT a2

1-a2/b2  bi r2

a2a

u PIE a2  liz la a2  (1
r 1 - a/b(1--2v

)
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and in the mandrel

ar = a9= -P

u/r = -(1-VL1-2V1
2)P/E1  (2)

where E, v, and El, v1 are the material constants of the tube and mandrel,
respectively. At the interface, ua (tube) - ua (mandrel) = I by the com-
patibility requirement. The interference pressure (p) is a function of the
interference (I) given by

El (1 a2  a2  a2

(1 - 7)/[(1+)) + (1-v.-202) 61 + (1-V1 -2v12)(1 - 61)E/ElJ (3)

For sufficiently large values of the interference, the stresses in the tube
reach the yield limit. Assuming that Tresca's yield condition governs the
behavior of the material, the tube first becomes plastic at the interference
when the stresses satisfy ae - ar = ao, where ao is the initial tensile yield
stress. The solution for the critical interference pressure to cause incipient
plastic deformation is

P* = 1 %o (1 - a2/b2 ) (4)

and it follows from Eq. (3) that the interference for the onset of plastic flow
is M

I* o a 2 a2E- = [(l+v) + (1-v-Zva) a2  + (1-Vl-2v 2)(1 - 61)E/E1] (5)

which reduces to I* = (1-02) a ao/E for the special case (E1 = E, v1 = V).

III. SWAGING BEYOND THE ELASTIC LIMIT. For values of interference larger
than that given by Eq. (5), a plastic zone forms in the tube, so that for a 4 r
4 p the tube is plastic, while for p 4 r 4 b the tube material is still in an
elastic state. The elastic-plastic interface radius p is a function of the
interference I.

We assume that the steel tube is elastically-ideally plastic, obeying the S

Tresca's yield criterion and the associated flow theory, but the tungsten car-
bide mandrel is elastic. This assumption is justified because the strength
ratio of tungsten carbide to steel is about three. For loading beyond the '.
elastic limit, the closed-form solution has been found by Koiter [2]. The
expressions for the stresses and displacement in the tube are

.. '5

= - I 1 + bZ) - log 2 in (a 4 r 4p) (6)

bR
aala

T =2 in (p 4 r 4 b) (7)

e/a 0  
bi r;)
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E U = (1-2v)(1+V) ar (1-V2) (8)
ao r ao r2

where the elastic-plastic interface (p) is related to the internal pressure (p)
by

Plao =  (I - pa/ba) + log(p/a) (9)

For swaging beyond the elastic limit, the compatibility requires ua (tube) - ua
(mandrel) = I at the interface, i.e.,

E_ I = (l-V2) 22 P_ [(1-2v)(1+0) - (1-Vj-2V12 )  ](10)
a0 a a2  G 0

Equations (9) and (10) give us a parametric representation of relating p to I
through the parameter p. The contact pressure at different locations can thus
be determined as a function of the interference I.

IV. UNLOADING ANALYSIS. After swaging, the permanent bore enlargement and
residual stresses can be calculated by an unloading analysis. Let a double
prime denote a component in the residual state, i.e., ag" = ag + a.' Assuming
elastic unloading, the solution is given by

P [±P b2

-= b2/a
2  - 1 r2  -1]

E u'/r = - v(-') + (1+v)b2/r2]p/(b2/a2-l) (12)

In a recent paper [6], this author presented a more rigorous elastic-
plastic unloading analysis based on a new theoretical model considering the
Bauschinger and hardening effects during unloading. This mode is a very good
representation for the material behavior of the high strength steel used in gun
barrels (7]. Taking into account the Bauschinger effect (f) and the strain-
hardening during unloading (m'), we have obtained a closed-form solution. On
unloading, yielding will occur for a 4 r < p' with p' < p. The stresses in the
reverse yielding zone (a 4 r < p') are given by

ar'/ao = P/ao - U2'(1 +f)(p'/a)2 (1-a2 /r2 ) - (1-A2')(1+f)log(r/a) (13)

7'I1o = ar'lao - (1+f)[1 + 02' (p'2/r2-)] (14)

where V(1-in'),
= (1-m')/[m' +-2 ?1] 2 ' = m 'A1

'/(1-m ') (15)
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The stresses in the elastic zone (p' 4 r 4 b) are

= %(+f)[± (p'/r)2 - (p'/b)2 ] (16)

/o 

,Ia
The displacement for the entire tube (a 4 r 4 b) is

(Eao)u'/r = (1-2v)(l+v)(ar'/lao) - (1-v2)(1+f)(p'/r) 2  (17)

The residual stresses and displacement are found by addition

ar" =ar +a r' I ae" = ae + ae' and u" = u + u' (18)

V. NUMERICAL RESULTS AND DISCUSSION. The material constants used in the
calculations are E = 206.84 GPa, v = 0.3, ao = 1.29 GPa, m' = 0.3 for the high
strength steel and E1 = 610.19 GPa, i = 0.258 for the tungsten carbide mandrel.
The radius of the mandrel is a constant c = 58.42 mm, but the thickness of the
tube varies along the axial direction with the inner radius (a) increasing
slightly and the external radius (b) tapering more rapidly. The values of a and
b at four typical sections are a- = 56.96, 57.82, 57.99, 58.63 mm and bj =
157.50, 106.75, 83.00, 83.00 mm, for j = 1,2,3,4, respectively. The
corresponding values of wall ratio are b,/a. = 2.765, 1.846, 1.431, 1.42 at four
sections. The interference during swaging 1I) is the positive difference
between c and a. The values of I at four sections are I, = 1.46, 0.60, 0.43,
-0.21 mm for j = 1,2,3,4. The negative value of 14 means that there is no con-
tact between the mandrel and the tube. For the positive values of interference,
the contact pressure and the stress distribution during swaging can be obtained
using the methods presented in Sections II and 111. The information after
swaging can be obtained by the unloading analysis presented in Section IV.

The numerical results are presented in terms of the dimensionless quan-

tities defined by

r= r/a , p= P/o , ag = aelao

= (E/ao)I/a , u = (E/ao)u/a , etc. (19)

The contact pressure (p) and hoop stress (ae) at the interface are presented as
functions of the interference (I) in Figures 1, 2, and 3 for wall ratios b/a =
2.765, 1.846, 1.431, respectively. The results for swaging within and beyond
the elastic limit are included. The pressure is a monotonous increasing func-
tion of the interference, but the maximum value of hoop stress occurs at the
onset of plastic flow as shown in the dotted curves. Initial yielding occurs at
I* = 0.774, 0.799, 0.830, and fully plastic flow occurs at I** = 6.638, 2.909,
1.751 for three different wall ratios, respectively. The_actual values of
interference (I) at three chosen sections are I1 = 4.10, 12 = 1.66, 13 = 1.19.
These values indicate that the swaging is partially plastic at these sections in
zones 1, 2, and 3. The corresponding locations of elastic-plastic boundary are
given by p/a = 2.2001, 1.4196, 1.19205, and the amounts of overstrain are 68,
49.6, and 44.6 percent, respectively. Also shown in Figures 1, 2, and 3 are the
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values of contact pressure (p = 0.972, 0.555, 0.671) and the hoop stress at the
interface oe = 1 - p. The distributions of hoop stresses during swaging are
shown in Figure 4 for typical sections in three zones. The maximum value of
hoop stress occurs at the elastic-plastic boundary. The information for the R
displacement and stresses after swaging can be obtained by an unloading anal-
ysis. The distributions of residual hoop stresses are shown in Figure 5 for the
chosen sections in three zones. Elastic unloading analysis is justified in zone
3, but reverse yieldings occur in zones 1 and 2 with p'/a = 1.305 and 1.014,
respectively. Finally the distributions of residual displacements (u ") at
typical sections in three zones are presented in Figure 6. Also shown in this
figure are the experimental data at the bore. The agreement between the calcu-
lated and experimental data is excellent in zone 1, but not so good in zones 2
and 3. This suggests that a more refined analysis is needed for sections with
smaller wall ratios. An investigation based on the finite element method is
being made and the results will be reported in the near future.
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OPTIMAL DESIGN OF A TWO-WAY CONDUCTOR

Gilbert Strang Robert Kohn

Department of Mathematics Courant Institute

Massachusetts Institute of Technology New York University

Cambridge MA 02139 New York NY 10012

Introduction

Optimal design presents an extreme case of non-smooth

mechanics. The unknown becomes the density of material, and in

an ordinary design the density takes the value 0 or 1. It

describes a shape which has least weight subject to the

constraints. However the optimal design is frequently not at

all ordinary. It is given by the "weak limit" of a sequence of

designs in which the density oscillates more and more rapidly

between 0 and 1. In other words the average density can

take fractional values, and no ordinary shape achieves the

minimum weight.

Mathematically this is an instance of the relaxation of a

nonconvex problem. That is a special topic in the calculus of

variations, to widen the class of admissible functions so that

the problem becomes correctly posed and its minimum is

achieved. To the given nonconvex problem we associate a

relaxed problem with the same minimum. The solutions of the

relaxed problem are the weak limits of minimizing sequences in N

the original problem.

Our application of this technique is to a question of

"optimal bounds" for composite materials. Its solution has

been a major achievement of the Tartar-Murat method of
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conpensated compactness. That method also searches for

functionals that are weakly lower semicontinuous--which is the

key property implied by convexity. If the unknown is a vector

function like (ul(x,y),u 2 (x,y)) then convexity must be

replaced by auasiconvexity; this is crucial below. Our goal is

to give a variational statement of the problem of optimal

bounds, and an alternate approach to its solution--in which we

find the relaxed problem and solve it.

The Design of a Conductor

How should a fixed number of resistors be arranged, in

order to maximize the current? For current in one direction

the answer is easy: They io in Darallel. The combined

resistance is the harmonic mean of the individual

resistances--or equivalently, the net conductance is the sum of

the conductances. The problem becomes more serious if we are

measuring two currents, north-south and east-west. In that

case resistors in one direction contribute little or nothing to

flow in the other direction. An optimal two-way design is not

clear. It is a much more complicated series-parallel

connection, and the rules of the competition become important.

We propose to make the problem continuous rather than

discrete. Instead of current between nodes, we measure current

across a unit square. In that square we place conducting

material--as much as we have, in the best orientation we can

find. If the area of conducting material is A it leaves an

insulated area 1 - A through which nothing flows. Then we

impose a unit voltage difference between the left and right

sides of the square, or the top and bottom, and measure the

current.

For flow in one direction, the design problem is easy. By
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placing the conductor in a strip across the square, or in

several Parallel strips, the current is maximized. Suppose the

specific resistance of the conductor is also unity (completing

a wanton destruction of dimensional arguments). When A = I

and the square is full, the net current is 1. As the area

(and strip width) A goes below 1, the horizontal current

remains equal to A. The overall resistance is 1/A in that

direction; the resistance in the vertical direction is

infinite.

The real problem is to design a single conductor to carry

flow in both directions, up the square as well as across.

Those measurements are done separately. A voltage difference

between x = 0 and x = 1 produces horizontal current, and

between y = 0 and y = 1 it produces vertical current. A

strip that does well for one does badly for the other. The

question now involves a function of two variables:

To achieve a horizontal current C < 1

and a vertical current D < 1, what

is the minimum possible conducting

area A ?

1 1
For C = 1 and D = 0, the minimum area is A = 1 The

conducting material is in horizontal strips. For C = 1 and
I

D=1 the natural construction is to use both horizontal and

I
vertical strips. If their widths are 1 then the area they

cover is

A = I+ 1 _ = 5 (after subtracting 1 for overlap).

In general the area occupied by a two-strip design is

C + D - CD. This "Red Cross design" will certainly carry the

required currents (or more), with voltage differences equal to
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1. The question is whether the area A = C + D - CD is

minimal. The answer is no.

The simplest design (Fig. 1) is not optimal. In fact it

carries more current than required; we have considerably

underestimated its conductance, by taking it to be C

horizontally and D vertically. When the strips have width

1 the actual currents (in each direction separately) are

1/1-. Heuristically, part of the horizontal current makes use

of the vertical strip. The computation uses Laplace's equation

in the cross, with potentials 1 and 0 on the left and right

sides. This design can achieve currents C = D = 1/47 with

area (which is less than C + D - CD). Nevertheless the
2a•

area can still be reduced.

In this note we describe one possible optimal design (it

is already known). More precisely, we describe a sequence of

designs whose areas approach the minimum value A. That value

is achieved in the limit, which becomes a composite material--a

mixture of conductors and insulators with a properly chosen

microstructure. The effective conductances of this limiting

composite can be computed, and they are C and D. It is a

straightforward problem in homogenization, except that the goal

is not the usual one--to compute effective conductances for a

given microstructure. Our problem is optimization, to find the

best composite.

The design is not unique. For equal values of C and D b.

the composite will be isotropic, and an optimal design was

found by Hashin and Shtrikman [1]. They filled the square with

circular disks, each consisting of a conducting ring around a

smaller insulated disk. With the right ratio of radii, and a

packing by infinitely many disks, the properties are optimal.

The extension to anisotropic designs (C 0 D) was found by
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Tartar and Murat [2], who replaced the circles by ellipses.

But the real achievement of these authors was not the

construction of optimal designs; it was the Proof that no other

design could be better. That is a subtle problem, to admit all

microstructures. It led Tartar and Murat to develop the theory

of "compensated compactness," a systematic approach to weak %d

limits--when functions (or designs) can oscillate more and more

rapidly, and only certain average values have a stable meaning.

That theory has extremely valuable applications, far outside

the present problem.

Our goal is to contribute one more proof that the area A,

given below, is actually minimal. It is based squarely on [3],

in which we computed the minimum value of a specific nonconvex

functional. That nonconvexity is typical of optimal design

theory, in which the original statement is a "0-1

problem"--there is a conductor or an insulator in each

subregion. Just as integer programming is nonconvex and

difficult in comparison with linear programming, so our

continuous problem needs to be relaxed to a variational problem

with reasonable solutions and the same minimum. Those

reasonable solutions will be the weak limits, or averages, of

the unreasonable designs which appear in the 0-1 formulation.

In other words, we allow ourselves to construct composite

materials out of the original materials, and this

homogenization process gives to the original nonconvex problem S

a new and more satisfactory form. In the case of one current

it becomes convex. In our present case of two currents it

becomes Polyconvex, and can be solved.

The construction will not be based on circles or ellipses. 4

A different class of designs was developed by Lurie and

Cherkaev [4], who stayed with strips but made them extremely Ii
thin. In the limit it is the density and direction of the
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strips that determines everything--it decides the conducting

area A and the macroscopic properties of the composite. With

this "strip construction" the calculations become easier; the

next section nearly returns to resistors in series and

parallel. The construction is also a realization in physical

terms of the mathematical process of convexification--to fill

in the line segments between any pair of points, and then to

fill in line segments to any of the new points, and so on. In

the case of two currents and a conductivity matrix, these

become line segments between matrices whose difference has rank

one. That is algebraically more delicate, and in the present

construction it produces "strips of strips"--but the underlying

idea is not changed.

One contribuiton of this note is to give a fresh statement

of the variational problem. We have found it useful to ask for

the minimum area A as a function of C and D, rather than

to describe all the conductivity tensors that can be achieved

with prescribed area A. (The two forms are equivalent; it is

like giving a function A(C,D) instead of its level sets.) We

will not study the worst composites, which are also of interest

and are closely related. Finally we reemphasize that the

construction is easier to discover than a proof of its

optimality, but nevertheless several proofs have been given:

Kohn and Milton [5] have provided a comprehensive analysis of

the problem of optimal bounds.

The principal application is to structural problems--the

weight minimization of an elastic body subject to constraints

from the loads. This is the shape optimization pioneered by

Michell and Prager, and highly developed in the work of Rozvany

[6,71. Mathematically it rests on the relaxation of

variational problems. Our joint paper [3) gives the underlying

theory, which leads to a systematic procedure for computing the
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theory, which leads to a systematic procedure for computing the

relaxed problem--in which homogenization is successful and the

minimum weight is attained. The design problem also extends to

plates, where the appearance of more and more stiffeners in the

numerical solution of a 0-1 problem led Olhoff and Cheng [3]

to discover the approach to a composite. The plate equation is

of higher order than our electrical conduction problem, but we

anticipate that the strip construction still leads to an

optimal design--and that the theory of homogenization (or

relaxation, or polyconvexity) will yield a proof that this

construction is optimal.

Strips of Strips

We go back to the Red Cross pattern, in order to improve

on it. The improvement comes by making it easier for vertical

current to use the horizontal strip. As it stands, the current

has to make a long excursion; the vertical current away from

the main vertical strip is exponentially small. We divide that

strip into N thinner vertical strips. equally spaced across

the square (Fig. lb). As N -o a*, that part becomes a

composite--still with infinite resistance in the horizontal

direction. When the density of vertical strips is E, and the

height of those strips is 1-C (as before), the vertical

resistance of the composite is (1-C)/E. Since the composite

is in series with a conducting strip of resistance C (to

vertical flow) the effective properties are:

vertical resistance C + 1-C

horizontal resistance

conducting area A = C + E(l-C)
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The desired value of vertical resistance is l/D, to produce

current D with unit voltage drop. Therefore

C 1-C 1 orD-CD

_ C + -T- =r , or = -

The total conducting area is

D-CD C+D-2CD
A = C + D (1-C) = "-CD

This is the optimal value established (but differently

expressed) by Tartar and Murat.

For small currents the area is close to C + Di the

economy from overlapping use is small. However the first

correction term is -2CD, better than C + D - CD from the

cross pattern. For large currents the improvement increases.

In the example that previously filled 5/9 of the square, we

now have:

~1 a1dD1=

C and D require only the area A-

In that case the density of vertical strips is E = 1/4.

Note that we have not filled the square with a single

homogenized composite. That is easy to do, keeping the

properties optimal. If we alternate rapidly between M

horizontal strips of conductor and composite (Fig. 2), then the

properties are not changed. As M this produces a

homogeneous material formed from "strips of strips." This

would be the local construction in each small square of a

larger design, in which the conductances and area fraction A

may vary throughout the region. That global problem has a

straightforward variational statement, after the local solution
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has produced the "relaxed" in+egrand. In other words, the

present construction produces a family of optimal composites to

be called on for a globally optimal design (3].

In a manufactured design, M and N are finite. However

the desion will not apDroach optimality if M = N. That choice

would homogenize the simple Red Cross pattern, without

improving it. The composite of vertical strips (N - ) need

not be completed before M increases--we can allow N -

M2--but it must proceed more quickly. Of course the vertical

and horizontal directions could be reversed, to give a

different design that is equally optimal (and elliptical

inclusions are a third possibility). It is not known how to

describe all composites that achieve the optimal bounds. Only

the bounds themselves are known, and we come now to the proof

that A above is minimal.

The Variational Problem

Suppose S is the open unit square, partly insulated and

partly conducting. When a unit voltage is applied between

x = 0 and x = 1, current flows. It is described by a vector

whose divergence is zero (there are no sources inside the

square). Therefore the vector has the form (au/ay,-au/ax)

for some stream function u(x,y). For any u this vector has

divergence a 2u/axay - a 2u/ayax = 0. It gives the magnitude

Ivul and also the direction of the current at each point. In

an insulated region, the magnitude is Ivul = 0 and the stream

function is constant. At the boundary of such a region the

normal derivative from both sides is au/an = 0. At the lower p

boundary of the square we impose u = 0, and at the upper

boundary u = C --in order that a current C shall flow from

left to right. (The increase u(Q) - u(P) in the stream

1E9



function gives the flow across a path from P to Q.) Since

the conducting material has unit specific resistance, the heat

loss--which is I 2R in a single resistor--is IfIvul 2dxdy.

That equals current times voltage, or C times 1. This

current is to be achieved in the smallest possible conducting

area. That area is identified by the condition vu 0 0

--current is flowing--and the problem becomes:

Minimize the area in which vu 0 0, sub ject to

ff Ivu 2 dxdy = C, u(x,O) = 0, u(x,l) = C
S

This one-dimensional problem is solved by a horizontal

conducting strip of height C. The stream function can be

u = y for y C, u = C for y I C. Then Ivul = 1 in the

strip and vu = 0 elsewhere. The constraints are met, and the

strip area C is minimal.

Note: The constraint 11 Ivul 2dxdy = C has used the fact that

the actual current minimizes this integral, and therefore

satisfies Laplace's equation in the conducting area. The

physical argument based on heat loss can be replaced by Green's

identity

if 1vul 2 dxdy = fi u(-ux-Uy) + I u !- ds

xx yy an

On the right side the only nonzero term is the integral of u

au/an along the top of the square, where u = C and

a au/an ds = voltage drop = 1. Therefore If Ivul 2 dxdy = C.

It is important to see that the problem above, while not

difficult, is also not convex. The minimization of area is
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actually the minimization of II 1 vu*O)dxdy, where the symbol

1K  represents a characteristic function--the function which
equals one in the set K where vu 0 0, and zero outside. It

is the nonconvex 0-1 function illustrated by Fig. 3a. The

value zero looks isolated, but if vu = 0 in a large set, then

the integral is small. The goal is to achieve vu = 0 as

often as possible, and the constraint is introduced through a

Lagrange multiplier A: the functional becomes

L(u,A) =f(12
{vuO1 + Ajvu

2 I dxdy - AC.

It is this integrand F = 1 + AIvu 2 , with the isolated value

F(0) = 0, which is illustrated in Fig. 3b. It needs to be

relaxed.

For a problem in which the unknown is a scalar, the

relaxation of F is the same as its convexification. We may

replace F by the largest convex function that satisfies

F < F, without changing the minimum value of the integral.

(The minimizing function u may be changed radically. For

the original L it may not have existed.) In this problem Fc

2grows linearly with Ivul, up to the point where Alvul = 1

and F is tangent to F. Prior to that point the convexifiedc

functional is

L c(U,A) f Fc dxdy - AC fiI 2A 1/2 vul dxdy - AC

The minimizing u , which must go from zero at y = 0 to C

at y = 1, can be taken linear: u yC. Then Ivu I = C and

the functional is
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L (u* ,A) = 2A 1 /2C - AC . S

The maximum over A occurs at A 1, and yields the minimum

area subject to the constraint: optimal area = C. We note

* *2 2
that A ivu j = C < 1, so the minimum does occur in the range

where Fc  is strictly below F. This is the "homogenized"

regime, oscillating between insulator and conductor--between

F = 0 and F = I + AlvuI2--in which the averaie of F is Fc

One further comment on this easy problem, the design of a

one-way conductor. It was made to look difficult by

relaxation! A simpler optimizer is the one proposed at the

start, with stream function u = y for y < C and u = C

2elsewhere. That choice leads to Alvul = 1 in one strip and

vu = 0 in the complementary strip, and no relaxation occurs.

Each region is fully conducting or fully insulated; the 0-1

problem attains the same minimum as the homogenized problem.

In fact the homogenized solution is the one suggested by

Fig. 2, in which the horizontal conductor is split into M

strips, with M _ -.. The result is a composite conductor

(horizontal only; the vertical part of Fig. 3 is not present)

through which the current is uniform. That corresponds to our

relaxed solution u* = yC over the whole square.

Thus the one-way problem illustrates relaxation in a case

where it is not needed. The minimum area C is also attained

in the unrelaxed problem. However our proof that this is the

minimum used convexification: for A = 1 and any admissible

u,

area = [1 l(vu*0}+ 1vu 2]dxdy - C > ff -2vuldxdy - C > C .
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In the two-way problem relaxation is absolutely needed--the

original has no solution--but a simplex convexification is no

longer correct.

The Two-Way Problem

The variational statement involves two stream functions

u(x,y) and v(x,y). The unknown is now a vector. Its first

component is constrained by u(x,O) = 0 and u(x,l) = C and

ff Ivul 2 dxdy = C, as before. The second component v

reflects the vertical current D, which is required to flow

when a unit voltage drop is imposed between the bottom and top

of the square. In the region where both currents are zero,

vu = 0 and vv = 0, conducting material is not needed. The

conductor occupies the set

K = {vu 0O} U {vv } ,

whose area it is our goal to minimize. The problem becomes:

Minimize area (K) = ff 1K dxdy subject to fflvu 2dxdy S C

IfIvul 2dxdy 5 D, u(x,O) = 0, u(x,l) = C,v(0,y) = 0, v(l,y) = D.

The strip design proposed earlier has area

A = (C+D-2CD)/(I-CD). We now show that this is minimal.

The problem is again nonconvex because of the 0-1

characteristic function 1 Introducing the constraints by

Lagrange multipliers A and p, the unrelaxed functional is

L(u,v,A,) = [lK+A1vuI 2 + pJvv2 Idxdy- AC - pD. (1)
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It could be convexified, but the minimum of L is too low; it

is below that of L. The correct relaxation is the

quasiconvexification L r --the largest functional below L

1which is weakly lower semicontinuous in HI . Its minimizing

functions u ,v will be the weak limits of minimizing (but

highly oscillatory) sequences for L.

The difficulty is to compute the relaxed form L . That

was the goal of our paper (3]. The property of quasiconvexity

is difficult to verify, but in several important examples a

stronger property holds and can be tested. This stronger

property of the relaxation Lr = If Fr (vu,vv) dxdy is

polyconvexity: Fr  is a convex function of vu

and vu and the Jacobian determinant

J = 1vu vv I .

The Jacobian is itself nonconvex, so that a polyconvex function

need not be convex. It will be the upper envelope of a family

of multilinear functions--linear in J as well as vu and vv

--in the same way that convex functions are envelopes of linear

functions of vu and vv. In this problem the unrelaxed

integrand is

F = (O:21 2 if vu = vV = 0L+I otherwise.

The notation has incorporated A and p into T = A 1/2u and

= ji1 2v. We note that the Lagrange multipliers are

nonnegative because the constraints are inequalities--the

designer is happy if the conductor offers less resistance than

specified to one or other of the currents. In the optimal

1 74



design we expect equality, If IvuI 2 = C and f$ ivv 2 = D.

The relaxation of F is known from (3]:

F 1 2p-2 + 2'  if p S 1Fr 1 l+IV~uI 2 +V 2 if pl1

where p = (Ivll2 + avVl + 2I~l) / 2  and T = IvE v7l.
show below that Fr is Dolyconvex and F < F. We need not

show that F is the correct relaxation, although it is; nor

quasiconvex function is between F. and F . That fact is not

required for our specific (and self-contained) problem. We

know that the constraints can be satisfied in a conducting area

A = (C + D - 2CD)/(l-CD), and our only task is to prove that

the area cannot be smaller.

Provided F is polyconvex, the associated variational~r

problem can be solved:

U7(x,O) = 0, ir(x,l) A 12c

Minimize If Fr dxdy subject to v(Oy) 0, v(ly) 1 2 D.

The constraints are satisfied by the linear functions

A/2 Cy and V 1/2Dx

For those functions the Jacobian is constant, and the

fundamental condition for quasiconvexity is that such a

candidate--if it satisfies the boundary conditions, and is

therefore admissible--is always minimizing. Therefore the

minimum value of ff Fr dxdy, after integration of a constant

over the unit square, is
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2p- 21T = 2(AC 2 +pD2 +2A 1 /2P1/2 CD) 1 / 2 
- 2A 1/2p 1/ 2CD=. 2( 1/2 +1/2D_1/2 1/20D

=2(A "C+P "D-A 1 "P 1 CD)

Remembering the final terms -AC - pD in the Lagrangian (1),

we are left with a maximization over A and p:

A' = max min L
A,p u,v

= max 2(A1 /2C+p 1 /2D - A1 /2 P1 /2CD) - AC - pD. (2)
A, J

Differentiating with respect to A and p, the Lagrange

multipliers are

1/2 1-D 1/2 1-CA T =E and P T -=

Then substituting into (2) yields

A' = C+D-2CD (which coincides with A) . (3)

This calculation assumed that the minimum occurs when p 1.

That is easily verified. In fact p turns out to equal the

density of conducting material--and in the end p = A, because

the density has this constant value over a unit square.

To repeat the main line of the argument: The area of the

design cannot go below A', because

i) Fr < F and thus Lr < L for each nonnegative A

and p

ii) F is polyconvex, so that the associated functional

r Vattains its minimum p
iii) that constrained minimum is A,, which coincides
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with the area A approached by the strip construction. I
The minimum of the relaxed problem is attained by linear stream

functions u* and v* , corresponding to uniform flow through

the square--which in the relaxed problem is covered by a

homogeneous composite. In fact Fr was computed in [3]

precisely by applying the strip construction. Our observation

here is that we need only its polyconvexity, in order to solve

the variational problem in this paper--and that this problem is

a restatement of the optimal bound problem. Thus the argument

depends on establishing that something is lower

semicontinuous!--which Tartar and Murat did in another way.

The proof of polyconvexity could display the multilinear

functions whose envelope is Fr , but the result comes more

neatly as follows. Start with the convex function

c(t) = ( t2 O~tl

Then consider the two functions

F+(vu,VvJ) = c(([vuj 2 + Ivul 2 + 2 det [vu vv]J 1/2 ) T 2J

For either sign, the quantity Q in brackets is a nonnegative

quadratic form in vu,vv, and therefore a sum of squares. Its

square root t is a convex function, and c(t) is convex and 4

increasing. Therefore the composition c(t(vuvv)) is convex.

The linear terms 7 2J leave F+ convex, as functions with an

extra argument. Then because Fr  is the maximum of the two

functions F+, when J is identified with det[vu vv], Fr

must be polyconvex.
t2

For that last step, note that c 1 + t2  for large t
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and the functions F+ become 1 + ivul 2 + IvvI 2 . For small t

the comparison between F+ and F_ rests on the inequality

2(r+s) 1/2 - s > 2(r-s)1 / 2 + a

This holds for r > a > 0, r + s < 1. In our case

2 2r = Ivul + Ivvi and s = 21J. Thus the maximizing choice

of sign is the one for which + det (vu vv] equals the

absolute value IJI. With that choice the argument t

coincides with p in the definition of Fr , and max F+

coincides with Fr

Finally F is below F because 2t is below 1 + t2r

The difference (l-t) 2 = (1-) 2 in the range 0 < p < 1 is

the saving in area achieved by homogenization.
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total width C

total width E

Fig. 2. Approach to a fully homogenized composite: N >> M

F =1)XtvuI 2

1 ( vu'u'O)

v__ _ _ _ F = 2 ) , 1 / 1 7 11 1 b . U / '

F(O) = 0

Fig. 3.a) Characteristic function (b) Convexified function
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ON A REFINED NONLINEAR THEORY OF
LAMINATED COMPOSITE PLATES

J. N. Reddy*
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Abstract. This paper summarizes the results of research on the

development of a refined shear deformation theory of plates and its

analytical solutions in the linear case. The detailed results are

reported in two technical papers, which will appear elsewhere. A third-

order, nonlinear shear deformation plate theory that accounts for

parabolic distribution of transverse shear stresses through thickness

and moderate rotation terms is presented. The Levy type analytical

solutions are developed for the linear case.

I. INTRODUCTION. The advent of new composite materials and their

increasing use in various fields of advanced technology has generated a

new interest in the development and solution of consistent refined

theories of anisotropic composite plates and shells. This interest is

due to the fact that the classical plate theory, in terms of its basic

assumptions (i.e. the Kirchhoff hypothesis), comes in conflict with real

behavior of these new materials. For example, in contrast to the basic

assumption of infinite rigidity in transverse shear in the classical

plate theory, the new composite materials exhibit a finite rigidity in

transverse shear. This property requires the incorporation of

transverse shear deformation effects.

In addition to other shortcomings, the classical plate theory

involves a contradiction between the number of boundary conditions

physically required to be fulfilled on a free boundary and the number

available in theory, which is to be consistent with the order of the

associated governing equations (see Stoker [11). The non-fulfillment of

boundary conditions on the bounding surfaces constitutes another feature

of the classical theory. In recent years attempts were made to refine

the classical theory by: (I) incorporating transverse shear effects,

(ii) removing the contradiction which concerns the number of boundary

* Clifton C. Garvin Professor
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conditions to be prescribed at each edge, and (iii) fulfilling the

boundary conditions on the bounding surfaces and, in the case of

laminated composite plates and shells, of the continuity conditions at

the interfaces between the contiguous layers. In addition, the refined

transverse shear deformation theories can be used to model such

anisotropic plates and shells whose material exhibits high degree of

anisotropy, and are not restricted to the thinness requirement implied

by the classical laminate theory. Another feature of refined laminate

theories concerns the adequate incorporation of the dynamical effects

allowing the evaluation of the lowest and higher natural frequencies.

The shear deformation theories known in the literature can be

grouped into two classes: (1) stress-based theories, and (2)

displacement-based theories. The first stress-based transverse shear

deformable plate theory is due to Reissner 12-41. The distribution

across the thickness of the transverse normal and shear stresses is

determined through integration over the thickness of the equilibrium

equations of the 3-0 elasticity theory. The associated field equations

and boundary conditions expressed in terms of 2-0 quantities can be

determined by using the variational principles of the 3-0 elasticity

theory, or by considering the moments of nth order of the basic

equations of 3-0 elasticity theory. Both methods allow the reduction of

the 3-0 problems to a 2-0 equivalent one.

The pioneering work of the displacement-based theories is due to

Basset [51. Based on Basset's representation of displacement field,

Hildebrand, Reissner and Thomas [61 developed a variationally consistent

first order theory for shells. The field equations were derived using

the principle of minimum total potential energy. By using the displace-

ment representation of Basset, Mindlin 17] extended Hencky's theory [8)

of isotropic plates to the dynamic case. The shear deformation theory

of Hencky-Mindlin is referred as the first-order transverse shear

deformation theory. Recently, Reddy [9-111 developed a variationally

consistent third-order shear deformation theory that accounts for

parabolic distribution of transverse shear stresses through thickness

and the von Karman strains.
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In geometrically nonlinear theories of elastic anisotropic plates

one often assumes that the strains and rotations about the normal to the

midplane are infinitesimal, and retains the products and squares of the

derivatives of the transverse deflection in the strain-displacement

equations (the von Karman assumption). The von Karman nonlinear theory

does not account for moderate rotation terms that could be of signi-

ficance in the analysis (especially in stability problems) of plates

while accounting for the transverse normal and shear strains. The small

strain and moderate rotation concept was used in the classical theory of

plates and shells by Sanders [121, Koiter [131, Reissner (141 and

Pietraszkiewicz [151, and in first-order plate and shell theories by

Naghdi and Vangsarnpigoon (161, and Librescu and Schmidt [171.

In the present study, the third shear deformation with moderate

rotation terms (see Reddy [181) is reviewed, and analytical solutions of

the lineary theory (see Khdeir, Reddy and Librescu [191) are discussed.

II. A THIRD-ORDER THEORY. Consider a laminated plate composed of

N orthotropic layers, symmetrically located with respect to the midplane

of the laminate. The governing equations of the refined theory are

based on the following displacement field [9-111:

4 z 2 aw
Su u+ Zl (- 5 +) (* +

2 ax

u3 = w, (1)

where (ul,u 2 ,u3) are the displacements along the x, y and z coordinates

respectively, (u,v,w) are the corresponding displacements of a point on

the midplane of the laminate, and ox and iy are the rotations of a

transverse normal about the y- and x-axes, respectively.

The cubic variation of u, and u2 through laminate thickness

introduces higher-order resultants

h

Pi 2 h aiz 3dz (I = 1,2,6)

185

Y el M V ./' M , 1



h

(R1,R 2) h z h (a ( 59ai4)dz,

and laminate stiffnesses

h

(Fij,H13) =f hQij (z 4z 6)dz (1,j =1,2,6)

h2
h

(013,F 13) f h Qi (zz4 )dz (1,3 4.5).

For symmnetrical cross-ply laminated plates, the following stiffness

coefficients vanish 191:

B * - =i 0 for 1,3 - 1,2,4,5,6

A 16 z A 26 0 016 0 0 26 z F 16 0 F26  H 6 = H 6  0

A 45 = 045 wF 45 = 0.

This implies that the effect of coupling between stretching and bending

vanishes. For such laminates the governing equations are given by (see

43 x 13 43 0y4)a 3
[F1  - + H x+c ( 4 a w) + F+H

3U2 11ax3  1 3h 2ax 3  ax 4 12 3X2ay 12 3h 2ax 2ay

a a 4  M xx+ a w + Fa'w
a2wY2) + F12  2 x+ H12(--2) 2 2 2)+F 22  3
axa ay ax 3h ay ax ax ay ay

3 3 3 4 3

2,(- _i2(!3 + 2 66(_ 2yL + 2A )+2 66(- 2~) 2
3h ay ayaxa3y ay ax 3h ay ax

a a4 w2 w at,
+ + Law [D - F55 L- 4 3'x +2

ax ay ax ay h ax h1 a ax

+ 2w aa 2 at, a2

D44(-L2. + ay 4+_ a 2 5, + !L+ -

ay h ay ax Ml

JF --il il V4



* 055(- 43*(-i + 7 ) + A i..~ + a~ ) + 0I 44(

h ~ x +ay, U4 T h ay

* + + q - 0, (2a)
ay,

2 ! ___(34,x + 22 4)!2
o11 - + 0D12 axay + - 2 a !!+ + F 2( )( I

axr 3h ax axWh

a2 2 *a2 2 3

2) + 6(- aay 6( axay + -

- [A .5(*~ + Lw + 055(- L)o + 4 a~ [F11

3h aF -- 2 32x 3) ax F1

3l- h 2 ax2 ax3 + 23Xay 12( 3h2 3XaY- axayl

3a 2 2 23
+ F 'y+ -#) + H 4 x 2(+-a

66axy 6 3 h- aY2 axay ax aY

+ L~ [055 ( + ox) + F55(- 4 o + =Lw 0, (2b)

h2, 3 a 3h2 34,

2 2 2 2 3 24
*x ~ ~ +2 20

+xa -#Y) + 66(- -il)---- a x xa6( ax 3h axaxay 2 axay

2 2 32 3W
+ 22  2i + 12(-L 22- -L))(-xoay+ 2 w + y+ !Lay3h a a a2'h2a'a

44*y ayaxh ay 3h2 3h(a 2  ay

4 a2 a2 0 +2a3 w2 $x +H 2 2o
+ ~ H ' 4 A( + - F 6 -~2  ax + Faan

6( h 2aa 2 12 12- 3 2 4,xa

a* 34 3 aa y+ 4 x(2l L l+L[
+ + 23 w w_

ax ay 22 ay 32( h2 ay2 ay3 h2  44(la

+ + F44( -L- + o) =0. (2c)
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Here q denotes distributed transverse load, and Ajj. Dip F. Hij are

the plate stiffnesses defined by

(Oj F jH).f h/2 q(k)(z2 4 6 )z (j 126
~~ij ij~a _ h/2 i Z, )z(j a126

(A jDi Fij f'hq(k)cj1 z4 )dz =i 4,5 (3
(A1JP1J~FJ) =-h/2 ij ~j 45

where de(k) ethe plane-stress reduced orthotropic moduli of the k-whedenote
th lamina. The boundary conditions of the refined theory are of the

form

w or Q

Specify: ano n on r

*n or Kn

*ns o ns .(4

Here r denotes the boundary of the midplane n of the plate, and

A ~2 + ~2Mm~Mn Mn
Mn = n (12-inny + 2M6 n n 2)

2 2

P =Pinx + Pn y+2P 6nxn y

Pn (P2  Pi)nxny+ P6(n 2 n2)

n + Q2 y + Th+jj-

M = M Pi (1 1,2,6)
i i 3h2

Qi = Q1  4 -- R1  (1 1,2)
h
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a a a a a a

-nx- + ny i in nx j-f - nax (5)

The stress resultants appearing in Eq. (5) can be expressed in terms of

the generalized displacements (w,*,x#y ) as:

1 01 i 12 ay 4(- 2h 2) 2 a y2

M1 u13%3h ax2  3h ~ y

2 a. . 4+ a 2 + a2w( 4 (!12z ' 012 i-. 22 ay 12F (- 2- (- ax 72 F22 7--f) -a + 2)
3h ax ay2

a*i a* 4, )a*,x a*!Y 2 L-
M6 = D66(aY' + ax) + F66 - ax 2a+

= A + Lw) 4 + aw)
44(y ay D44(- h2)(*y ay

Q1 = A55(*x + -x) + D55 (- h2  + L)

F atx h F + (ax! H1 x

34- 2~ 4 x + 2 2 2w)211 12 ay 12(-3h) ( -+ - +x +y2

3h ax ax 2 3h ay

= + Y( + +2w( * H
P2  F12  F22 ay h12(- 2  ax ax 22( - ay ay2)

a~ *4)(~ +) !! 2 2
P6 = F66(a-- + a ) + H66(-_" )(ay ax axay"

R2 = O Lw + y)+ 4la
44(a+ F44 (- -)(- + 4Y)

RI  D 1'L*+w 4) aw
S ax+ x+ 55(- h (ax + Ox)"  (6)

The Levy method can be used to solve Eqs. (2) for rectangular plates

for which two opposite edges are simply supported. The other two edges

can each have arbitrary boundary conditions. Here we assume that the

edges parallel to the y-axis are simply supported, and the origin of the

coordinate system is taken as shown in Fig. 1. The simply supported

189

w.N



boundary conditions can be satisfied by trigonometric functions in x.

The resulting ordinary differential equations in y can be solved using

the state-space concept (see [201).

Following the Livy type procedure, we assume the following

representation of the displacements and -loading:

w(x,y) - E Wm(y)sinox
m=l

W

* (X,y) = z Xm(Y)COSOX

y(X,y) E l Y (y)sinax
y m=1l

q(x,y) = E Qm(y)sinax ,  (7)
m=1

where a and Wm , Xm , Ym and Qm denote amplitudes of w, to, %y
and q, respectively. Substituting Eqs..(7) into Eqs. (2), we obtain

im%''' + e2W" + e3Wm + e4X" + e5Xm + e6Y '' + e7 Y + Qm = 0

e W +eW eX + e -0
e8wm  lom e1 eX m  12Yi

e13Wm' + e14Wm +e 15Xm + e16Ym + e17Ym 0, (8)

where primes on the variables indicate differentiation with respect to y,

and

= _ (--)2H22

3h2

4 )202 8 4)2F44

e2 = 2(-3hn2 (H12 + 2H66 ) + A44 --2 D44 + (2 F44

3 h 55 h 2 55 + A5 5 ]

e4 = 2 [- F12 +4 2 H12 - 2F66 +-2 H66 1
;h23 3h
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e5  -y (F11 - A H11 ) + 41 D55 2
55  55- A1S]

4 46= h(2 22 - 3' H22)

e7 = 2  [-F_ - 2F66 +12 + - 2 4 F44 + A44
3h2  H 12  2HJ) h

e8 = e4  e9 =e 5

066 Uh2  66 + ( )2H66

3h= 22 W 811 Fh! H 5 - h2  -A 55

e 1 1 2  6 6  392  12 66' H12 + H66 )1

e13 = -e 6 , e14 1 -e7 , e15 = _ e 12

e L F,~ + (4)e16 = 022 3h 2 F22 3h ( )22 :

17 66 66 - () 2 H661 + L 0 44 - ( )2F44  A44.

Equations (8) can be written as

Wm = ciW11 + c2Wm + c3X + + CoQm

m  C5Wm + C6Wm + c7Xm + C8Ym

m if
' c W"'' + c.^W' + c + cl2Y, (10)

where

= e e4 e6e 2  e6e7

elO 10e16  e16  16e2 "e1  e6
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e~e5  e e6e12
c = ( e -- -. e e 6  e 3 ) / ( e 1

elO~ 5/(el + _l

2 e e ee
C 14 1612 e

10161

e e1  e e1  ee2  e

4 e16 - el- elOel6 e16

c0 e e e6+e2
1 16 6

c5 = -e4/e10, c6 = -e5/elO, c7 = -ell/e 10 , c8 = -e12/elO

c9 = e6/e16, c10 = e7/e 16, Cll = e12/e16 , c12 = -el7/el6. (11)

The linear system of ordinary differential equations (10) with

constant coefficients can be reduced to a single matrix differential

equation using the state-space concept (see [201)

x' = Ax + b. (12)

This can be done by introducing the variables

x= W 2 ' x3 = W , x = W'"
4 m 4%

x~ ~ ~ =Y'X 13
w5herem x6 =X x7 '=Ym x8 'm  (13)

where

01
0 k03

CoQmx' , b = --

X1 05
Ig 0

x x7  0

0 (14)
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and

0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

C2 0 cI 0 C3 0 0 C4  (15)

0 0 0 0 0 1 0 0

C6 0 C5 0 C7 0 0 C8

0 0 0 0 0 0 1

0 clO 0 C9  0 Cl c12 0.

The solution of Eq. (12) is given by

x = eAYK + eAy f e-AYbdy, (16)

where K is a constant vector to be determined from the boundary

conditions, eAy denotes the product,

Xy
e e L 1

eAy = [c] " [c- ,1  (17)

[c] is the matrix of distinct eigenvectors, xi(i = 1,2,3,...8) are the

eigenvalues associated with matrix A, and [cl -I is the inverse of the
eigenvectors matrix [c].

The following boundary conditions are used on the remaining two

edges (i.e., the edges parallel to the x-axis) at y =

simply supported: w = x = P2 = M2 = 0

clamped: w = 2= Ox = 4y = 0
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free: P2  M2 = 0

M6 P6= o
S 4 3h2  6 =0

4Q-- R + -I- (3- + 3-- )  . (18)
h2 T 3h2 ax ay

Numerical results are presented for synmetric cross-ply (0*/900/00)

plates subjected to uniformly distributed load (qo), as shown in Fig. 1.

The following material properties are used in the calculations:

EI  19.2 x 106 psi , E2 = 1.56 x 106 psi

G12 = G13 = 0.82 x 106 psi , G23 = 0.523 x 106 psi (19)

"12 0.24

The following notation has been used throughout the figures:

SS - simply supported at y = -b/2 and at y = b/2.

CC - clamped at y = -b/2 and at y - b/2.

FF - free at y = -b/2 and at y = bW2.

SC - simply supported at y = -b/2 and clamped at y = b/2.

SF - simply supported at y = -b/2 and free at y = b/2.

CF - clamped at y = -b/2 and free at y = b/2. (20)

The aspect ratio, a/b, is taken to be 4.

To show the effect of transverse shear strains on the deflections

plots of nondimensionalized center deflection, w = 10
3w(a/2,0)h 3E2/(q0 a

4),

versus side to thickness ratio of various plates are presented in Figs.

2-4. The shear deformation effect is more significant in cross-ply

plates than in orthotropic plates. Also, the first order shear

deformation theory (FSDT) over predicts deflections relative to the

higher order theory (HSDT).

Figures 5 and 6 contain plots of the transverse shear stress a 13

through laminate thickness for various boundary conditions. The

stresses were computed using lamina constitutive relations. The

transverse shear stresses are constant and parabolic through thickness
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of each lamina, respectively, for the first- and higher-order

theories. The discontinuity at interface of lamina is due to the

mismatch of the material properties. When the stresses (a x Oy, xy)

obtained from the constitutive equations are substituted into the

equilibrium equations of elasticity and integrated through thickness to

determine the transverse shear stresses, the resulting stresses will be

continuous through the thickness.

III. A MODERATE-ROTATION THEORY. The theory is a generalization

of the classical plate theory, the first-order shear deformation plate

theory, and the third-order shear deformation theories of Reddy [9-

111. The theory is based on an assumed displacement field and orders of

magnitudes of linear strains and rotations.

Points of a three dimensional continuum V are denoted by their

orthogonal curvilinear coordinates x = (xl,x 2 ,x3). Covariant and

contravariant base vectors at points of the continuum are denoted

by gi and 9 , respectively. Latin indices are assumed to have values 1,

2, 3, and the Greek indices have values 1, 2. The laminated plate

continuum in the undeformed configuration is defined by the Cartesian

product of points in the midplane a and the normal [- h/2, h/21:

V = a x I~ h ,t

where h denotes the constant thickness of the laminate. Let xO denote

the curvilinear inplane coordinates and x3 be the normal to a. The

metric tensor components of a are denoted by

ga= go B , gB = * B , g33 =g 33 =1

r .9 = B , 3 n (21)a axa a a

where r is the position vector of a particle (xax 3) at time t, 6 B is

the Kronecker delta, and n is the unit normal to the boundary of a.

The displacement vector of a point in the plate at time t is of the

form
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ai
u 932 + u32 (22)

where the Einestein summation convention on repeated subscripts is

assumed. The covariant components of the Green-Lagrange strain tensor

are given by

1 mlj
= . (U1lj + Uj li + umliu ) (23)

where a vertical line denotes covariant differentiation. The strain

components eij can be expressed in terms of the linearized strains eij

and rotations wij as

1 m m m 1 mCj=e ij +-. e e +-. (e j

i j 2 me + e i + emii) W mj, (24)

where
I 1

eu -U + uUl (25)ej = 2 U1l + Ujli) 2 = 2 l j

Following [171, we now assume that the strains eij and

rotations wij are of the following magnitude:

ei= 0(e2) wa = 0(82) , 3 = 0(a) , a << 1. (26)

Equation (26) implies that the strains and the rotations about the

normal to the midplane are small, and that the rotations of a normal to

the midplane are moderate. Such assumptions are justified in view of

the large inplane rigidity and transverse flexibility of composite
laminates.

Neglecting terms of order (04) and higher in the strain

displacement equations (24), we obtain

1 3 3 1 3

C~ =e + (e. 3 8 + e )

A Ax ~ci+2(ew+e 33wa) + 2 wxa0i3

33 e + e3 + 3 (27)

33 .3w3 2 w3w3
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where the underlined terms are of order (e 3).

The present theory is based on the following assumed variation of

the displacement components across the plate thickness:

u (x'x 3 't) = uo(xB~t) - A f(X3 )u 1(xB t)

u (B'x 3 ,t) = uo(x8,t) + uO(x8,t), (28)

where f is a specified function of the thickness coordinate A3 Note
that the transverse deflection is assumed to be independent of x3and
consists of two parts, one due to bending and the other due to
transverse shear. The particular form of displacement field is assumed
in order to include the displacement fields of the classical plate
theory (set U3 = 0 and u1  0), the first-order shear deformation theory
[set u0 3=0 and f(x)= x1 and the third-order 3shear deformation theory

of Reddy [91 [e o 0and -~ 3)=X[ . (11-)21]. among others.
For the displacement field in Eq. (28), the strains for the

moderate rotation theory become [consistent with the assumptions in Eq.

(26)1,

= + X3 C + fK
cB ciB ae cgB

0ca o 3 3o 3 1 1 l-1
C A = 3 +ge03+ XK 3 + gx K 9 +f + fgi A

E3 "33333 (29)

where g = df/dx3, and

C 0 ~ + u 01) + -1001 + u.O1 Mu018 + u j
cis (UI +cJ 8a + 3 3 31B

1 0 1 0l o 0 0 1 0 10

C£C3 = (u. + U 81Cu 8) I' a3 2 3 1 xa'31x 'A %3 U3kaxU

1 11 o 1 1 ol 0 1 0£3 7 uxi u3 jx £A 2 uXlau, .£E33 = I' 3 a3c
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= - U - A (30)E33 3 I a ' 332 asa

The dynamic version of the principle of virtual displacements is

used to derive variationally consistent equations of motion associated

with the displacement field in Eq. (28). The principle can be stated,

in the absence of body forces and prescribed tractions, as

0 = [(.V (a Jaij)dV + f q6u 3dA - f Vp(6 1 )dV]dt (31)

where a"' denote the contravariant components of the symmetric stress

tensor, q = q(xO) is the distributed transverse force per unit area,

and p is the density of the material of the plate. The superposed dot

denotes the time derivative, = au/at. We introduce the couples and

inertias,
h

(Na5, Mal8, Pal) f2 y &1(1, x3, f)dx3

h

h
23

(Q , Qa, RO, Ra, So, SO) = f aa 3(1, g, x3, x3g, f, fg)dx 3

h

2
h

(N3, N3, f) = 2 a33(i, g, g2)dx3  (32)
h

h h h

72
I f pdx 3 , i f2 =f x3dx 3 , If = 2 pfdx3

h h1 h

h h h
2 323 2 3f 2 2312 f hp(x) dx 1 i2  f h x fdx . 12 f h f dx .(33)

7-
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The equations of motion of the theory are obtained by substituting Eq.
(30) for the strains in terms of the displacements (u 0 u 0 ,u I

into Eq. (31), integrating by parts to transfer differentiation from the
displacements to the stress resultants and couples, collecting the
coefficients of the various virtual displacements, and invoking the
fundamental leumma of the calculus of variations. We obtain the
following six equations:

ao: -a (Q Suo )l +Q ul)IS = u0-iU01+ fiu

6uo: Mat Sa + OOu s+ Q l:, cI l

6u3: MNNO o 1 Q11 + I~ u + O

6u~ 1 [Pao(Iu- 8 6 + U O1 )I + R~ a q 0 + So u
a. 8 ci 0C B3a 80 01

-(SOU3 1.)l. _ -
3ul + N3uo If u o I u ~o + u'(34)

____ ....... 31C IM 2 31a+ 12u.

where the underlined terms are entirely due to the inclusion of moderate
rotations (i.e., over and above the von Kairman nonlinear terms).

Equations (34) can be specialized to the three different theories

discussed earlier. The equations are summarized below:

(i) Classical Plate Theory (u0 = 0, u' 0)
3 01

-a8 (Q OuO j' 1 u0

MaB I + MGM 3 1)I (Qauoja)I - (Ral uo )I~ (Nu3  )

=q+ I uo + I - 1 u31  (35)
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(ii) First-Order Shear Deformation Plate Theory

N O(0, fz x)3

B ___ OR+1c
N08I + (QU 1)I0 = I u0+I

.o

a+ Nc1Bu318)I = q + 1 0u3

MclBis - Q 0(6 + u0  ) -N u. +RaB u a I u +I1 2 (36)

(iii) Third-Order Shear Deformation Plate Theory

(u = 0, f = x 3 1 (x3/h)21)

NiI + 6 B 0 I f 1

QUI + (N"08u )IC = q + Io

Pool -Q(6e+ u°=B  .0 u 1 N3 u 1 ifuo +I f 1  (7
pQB-B l = i + S IB (37)

Note that several other theories can be obtained from Eq. (35) as

special cases. Analytical solutions to the linear version of the third-

order theory were presented in Section II.
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NUMERICAL SOLUTION OF PARABOLIC PROBLEMS 

IN HIGH DIMENSIONS 

Edward Dean, Roland Glowinski, Chin-Hsien Li 

University of Houston 

Department of Mathematics 

4800 Calhoun Road 

Houston, TX   77006 

ABSTRACT. The main goal of this paper is to discuss the numerical solution of 

mathematical problems of parabolic type when the space diraension is high and/or 

the number of discretization points is quite large. In such cases, we can take 

advantage of the evolution nature of the problem under consideration to derive 

numerical methods quite easy to implement and well suited to vector and/or parallel 

computers. Operator splitting methods are one of the key ingredients of such a 

methodology. We shall illustrate the methods described in this paper by solving 

the time dependent Navier-Stokes equations for incompressible viscous fluids, a 

variational problem originating from the physics of liquid crystals, and finally 

advection-diffusion problems in very high dimension associated to the solution of ' 

the Zakai equation in stochastic optimal control. 

1.     GENERALITIES AND SYNOPSIS. 

Linear   and   nonlinear   Parabolic   Problems      for      Partial  Differential 

Operators   occur in many branches of Natural and Engineering Sciences.   One of 
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the main goals of this paper is to discuss the numerical solution of such problems 

by   methods   taking   advantage   of   the      evolution   nature   of   the   problem   under 

consideration, and also well-suited to   vector   and/or   parallel computers. 

Operator splitting methods are definitely a key to the solution of such 

problems and a description of these methods will be given in Section 2. In Section 3, 

we shall consider the solution of the Navier-Stokes equoMons for unsteady 

incompressible viscous flows, then in Section 4 the solution of nonconvex 

variational problems originating from the physics of liquid crystals. Finally in 

Section 5, we shall consider time dependent advection diffusion problems 

whose solution is an important part of some solution methods for those complicated 

Zakai equations originating from Stochastic Optimal Control', we shall, discuss 

there various solution methods using first and second order upwinding and also 

the modified method of characteristics when the diffusion coefficients are 

small. 

The techniques described in Sections 3, 4, 5 will be illustrated by numerical 

experiments. 

2.     DESCRIPTION OF SOME BASIC OPERATOR SPLITTING METPIODS FOR TIME 

DEPENDENT PROBLEMS. 

2.1. GENERALITIES. 

Let V be a Banach space; we consider in V the following initial 

value problem 

^      +   A(u) = 0, (2,1) 

uCO) = uo , (2.2) 
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where, in   (2.1) ,     A CO     is a linear or nonlinear operator. 

We suppose that     A     has the following   nontrivial   decomposition property 

A = Ai + A2 (2,3) 

(by   nontrivial we mean that     Aj   and   Ag   are     "individually"   simpler than   A). 

There are many techniques to achieve the numerical integration of the initial 

value problem (2.1) , (2.2) by taking advantage of the decomposition property 

(2.3). We shall describe some of them just below (more techniques are described in, 

e.g., [1] ).     Before giving these descriptions let's introduce some helpful notation. 

In the sequel At (>0) will be a time discretization step and u'"'^^ will 

denote an approximation of u ((n+a) At)  .    The first scheme to be described is 

the Peaceman-Rachford scheme (cf. Sec. 2.2) and then what we call a 0 - scheme 

(cf. Sec. 2.3). 

2.2. THE PEACEMAN-RACHFORD SCHEME. 

The principle of that scheme, introduced in [2], is quite simple: 

Consider the time interval [ nAt, (n+l)At ] . and suppose that u" is known; 

introducing the mid-point (n+i/2)At we integrate (2.1) over [nAt, (n+L/2)At] by 

a scheme which is of backward Euler type for Ai (implicit in Aj) and of the 

forward Euler type for Ag (explicit); on [ (n+l/2)At, (n+l)At] we exchange the 

roles  of Ai     and     A2     .       The above  program  is  definitely  realized  by  the 

following scheme: 

u° = lio ; (2.4) 
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then for     n^O ,   u"   being known, we. compute      ^n+1/2 and     M.^  ^   by solving 

successively 

At/2 
+   Ai (u""^''^^)   +   A2(u")   =   0   , (2.5) 

"^-^^      +   AiCu"-^^^^) + A^ (u"+^) = 0    . (2.6) 
At/2 

We observe that, initialization excepted,    Aj    and    A2    play a    symw.etric   role in 

the above scheme. 

To  study   some  of  the  basic  properties  of  scheme     (2.4)  -     (2.6)   ,     such  as 

accuracy   and   stability ,   we consider the particular case where 

(i)    V = R^ 

(ii)   A   is an     NXN   symmetric   and   positive definite   matrix;     UQE R'^ 

In such a case, the exact solution of   (2.1) , (2.2)   is known and is given by 

u(t) =   Q'^^ UO 

Concerning the decomposition of     A     we decompose it as follows: 

A = Aj + A2 J   Ai = aA   , As = M , with a+/3 = 1 , 0<a,^<l.        (2.8) 

Stability Properties of Scheme   (2.4) - (2.6):     We have from   (2.5) ,   (2.6) ,   (2.8) 

^n+l -[\ + l3f A]-' (I - a ^ A) (I + a ft A)'' (I - ^ ^ A) U" (2.9) 
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Using a vector basis consisting of eigenvectors of     A ,   we have from   (2.9) 

, (1-a ^ K) {l-f3 ^ h) 
I)  At At      "^ 

(1+a ^X,) i\ + 0 ^ N,) 
(2.10) 

where      \i     (>0,    V i = 1 , . . . N)    is the      i        eigenvalue of      A    ;    we suppose 

that    \i    -^ K  <^  • • '  ^^N   ■    Consider now the   rational function   Rj       defined 

by 

Ri(x) 
(1- I x) (1 - I x) 

(1+ I x) (1 + I x) 
(2.11) 

we observe that    | Ri(x) |  < 1 for all     x>0 ,   implying, in that simple case, the 

unconditional stability   of scheme   (2.4) - (2.6)   .   Since 

lim R,(x)   = 1 , 
x-H-oo 

(2.12) 

we observe that for stiff problems, i.e. problems, such that X^/Xi >> 1 , 

scheme (2.4) - (2.6) is not very good to damp simultaneously the components of 

u" associated to the large and to the small eigenvalues of A. From this 

observation, we can expect that scheme (2.4) - (2.6) is not well suited to 

"capture" the steady state solutions of stiff problems (like those obtained from the 

discretization of partial differential equations); this has been confirmed by 

numerical experiments. 

.Accuracy Properties of Scheme (2.4) - (2.6):     Since 

=   1   -   X   +  ^   +   X^   €(x) (2.13) 
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and,   from   (2,11) 

Rj (x)   =   1 - X + ^ + x^ ??(x) , (2.14) 

with       lim       e(x) = lim      ?7Cx) = 0 , we have that scheme     (2.4) - (2.6)   is 
X—>0 X—tQ 

second order accurate in the simple case considered here. We observe frotn 

(2.9) , that if one takes a = ^ = 1/2 , then the two linear systems, which have to 

be solved at each full step are,    in fact, associated to the same matrix    I + At A/4. 

2.3   The   0 - Scheme. 

In order to construct operator splitting methods better suited than scheme 

(2.4) - (2.5) to the numerical integration of stiff initial value problems (2.1) , (2.2) , 

we introduce first 8 a (0, .5) and then associate to 9 the decomposition of 

interval     [nAt , (n+1) At]   given by 

[nAt , (n+l)At] = [nAt , (n+e)At] U [(n+9)At, (n+l-0)At] U[(n+l-0)At, (n+l)At] . 

A numerical method for    (2.1) , (2.2)    taking advantage of    (2.3)    and of the above 

splitting of     [nAt , (n+l)At]   is defined as follows: 

u° = uo ; (2.15) 

then for    n^O ,    u"     being known, we compute     u"''"^ ,       ^''+i-s     ^t^^;^   ^n+i 

by solving successively 

!i^^^^   + Ai (u"+^) +   A, (u-^) - 0 , (2.16) 
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n+1-0     ,,1+9 ,^ , 

^     ~Q^^    +   Ai (u'^+1) + A,   (u»+i-^) = 0    . (2.18) 

Stability and Accuracy Properties of Schetne    (2.15) - (2.18):    taking the same mode! 

problem as in Section 2.2, we have   (with     9' = 1 - 26) 

u""^' =   (I + cxQAt A)"' (1 - i30AtA) (I + /3Q'AtA)'' (I - a0'AtA) 

(I + a9AtA)"' (I - ^9AtA) u". 

which implies 

Cl+cc0At\i)^ (l+^e'At^i) 

since 

(2.19)- 

""   = .7.::"::;2::.^":"\ < ■ (2.20) 

Consider now the rational function     Rj     defined by 

R,(x)   =    (l-/^gx)- g-ae-x) 
(l+a0x)^ (l+/30'x)      ' ^   "^^ 

XHJ+OO    '^^ '■'^'"    =    ^/'^ (2.22) 

we should prescribe 

°^^^ (2.23) 
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to have, from (2.19) , (2.20) , the stability of scheme (2.15) - (2.18) for the large 

eigenvalues of A. Concerning the accuracy of scheme (2.15) - (2.18) we can 

show that 

R, (x) = 1 - X + ^ {l + (/3^-a^) (20M0+1)} + x^7?(x) , (2.24) 

with       11m     rjix)  =  0   .     It  follows  from     (2.24)     that scheme     (2.215)  -  (2.18)     is 
X—to 

second order accurate     if   either 

a=/3(=l/2   from   (2.8))   , (2.25) 

or 

9 = 1 - 1/^fi =     .29289, . . . ; (2.25) 

scheme (2.15) - (2.18) is only first order accurate if neither (2.25) nor 

(2.26) holds. If one takes a = /3 = 1/2 , it follows from (2.20), (2.21) that 

scheme (2.15) - (2.18) is unconditionally stable for all 0s(O, 1/2) ; however, 

since   (from   (2.22) ) we have 

lim        |R2(x)| = 1 , (2.27) 
X—M-oo 

the remark stated for scheme (2.4) - (2.6) concerning the integration of stiff 

systems still holds. In general, we shall choose a and 0 in order to have the 

same matrix for all the partial steps of the integration procedure; i.e. , a. , 0 , Q 

have to satisfy 

a0 = ^(1-20)   , (2.28) 

which implies 

a = (l-2e),/(l-9)   ,     ^ = 0/(1-6) . (2.29) 

Combining   (2,23) , (2.29)   we obtain 
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0 < 9  ^ 1 /3    . (2.30) 

For      0 =  1/3 ,    (2.29)    implies a = ^S =  1/2    ;    the resulting scheme is just a 

variant of scheme   (2.4) - (2.6) 

If   0 <9< 1/3   ,   and if     a and   0     are given by   (2.29) ,   we have then 

lim |R2(x)| = /3/a = 0/(1-20)    < 1 . (2.31) 
X—H-oo 

Actually, we can prove that 9= [Q*, 1/3] (with 0* - .087385580 ,...) and ct , 

13 given by (2.29) imply the unconditional stability of scheme (2.15) - (2.18) , 

Moreover, if Ss (0* , 1/3) , property (2.31) makes that scheme (2,15) - (2.18) has 

good asymptatic properties as n—► + oo and for example is well suited to compute 

steady state solutions. If 0 = 1- 1/^ (resp. 0 - 1/4) , we have a = 2 - ^f2 , 

^= >[i -1 ,   /?/a = l/^fi (resp.   ct = 2/3 ,;3=l/3 ,   /3/a   = 1/2). 

2.4. Further Comments on Operator Splitting Methods. 

Integration schemes related to (2.15) - (2.18) have been discussed in [3] (see 

also [4] - [6]) . Concerning the convergence of the above schemes, the convergence 

of the Peaceman-Rachford scheme (2.4) - (2.6) has been proved in [7] (see also [8]) 

under quite general montonicity assumptions on A^ and Aj (in fact these 

operators can even be multivalued ). These are not such general results at the 

moment for scheme (2.15) - (2.18) (see however the discussion in [9] ). In [10] , one 

can find splitting methods derived from the Lie-Trotter formula and applicable to 

situations in which A = Aj + A2 + A3 ; these methods however may be inaccurate 

for steady state calculations; indeed splitting methods for more than two operators 

are also discussed in, e.g.,   [1] , [11] , [12] . 
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To conclude Section 2, we would like lo describe a variation of scheme (2.4) - 

(2.6) (due to Douglas and Rachford; cf. [13] ) ; in some occasions it seems to behave 

better than (2.4) - (2.6) as a tool to capture steady state solutions of systems such 

as (2.1) , (2.2) ; however) as a method for the numerical integration of (2.1) , (2.2) 

it is only first order accurate. In addition to that, although more robust than 

scheme (2.4) - (2.6) , it also suffers from the basic drawback of not being well 

suited to the numerical integration of stiff differential systems. 

The Douglas-Rachford schevie   is described by 

u^ = uo ; (2.32) 

then for        n^rO .   u"    being known^ we compute,       u""^'      and    u'''*''      a^ the. 

solutions of 

"^^   ':"" + A, ( u"+') + A2(u") = 0 , (2.33) 

"'^ ^\ '"^^   +   Ai (ii-"^) + A, (u"^^) - 0 . (2.34) 

The convergence of scheme    (2.32) - (2.34)    is proved in    [7j , [8]    for    A, ,    A..-, 

monotone   (possibly multivalued) operators. 

3.     APPLICATION TO THE NAV1ER-ST0KE5 EQUATIONS FOR INCOMPRESSIBLE 

VISCOUS FLUIDS. 

3.1. GENERALITIES.     SYNOPSIS. 

In  this section,  we shall  discuss  the application of the  operator splitting 

methods described in Section 2 to tiie numerical simulation of    Incompressible- 
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viscoits   flows modeled by the Nazner-Stokes eqxtaHons.    We shall only give here 

the general principle of such numerical treatment, referring for more details to 

[14] - [18] . 

Let us consider a Newtonian incompressible viscous fluid.    If   f2   and   F   denote 

N 
the flow region    (£7  C IR   ,  N = 2, 3 in practice) and its boundary, respectively, tiien 

this flow is governed by the following   Navier-Stokes aquations 

3u 
-^ - u6.n + (u._V)ii + Vp " f^   in   U     , (3.1) 

V'_u " 0   in   n   (incom-pressibility condition). (3.2) 

In (3.1) , (3.2) , 

(a)      V =    {-^1      ,    A = V'^=    X    ^,   x= {x'J-   ,    the   generic point of 

N 
(b)     u =   {uj        is the /iow velocity, 

■^ i^i 

(c)      p   is the pressure 

(d)     i/   is a   viscosity parameter, 

(e)      r    is a density of external forces. 

In   (3.1) ,   (u'V)u    is a aymbolic notation   for the nonHnear vector term 

Boundary and initial conditi07is h.ave to be added to    (3.1) , (3.2) ; here, we shall 

only consider   Dirichlet boundary conditions .such as 
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u=^   on   T   , (3.3) 

with, from the inconipressibilily condition (3.2) , 

£;n  dr "- 0   , (3.4) 

r 

with   ri   the outward unit vector normal to   T . 

Finally we shall prescribe as initial condition 

_u_(x,0) = _Uo(x)     a.e. on   Q   ,   with   V-LIQ = 0   . (3.5) 

Boundary conditions more complicated than   (3.3) are discussed in, e.g.,   [141 , fl8]. 

The    Navier-Stokes    equations   for   incompressible    viscous    fluids    have   been 

motivating a very large number of papers, books, reports, symposia, workshops, etc. 

Mentioning all of them is impossible and we therefore refer to the references in 

(141 - [IS] . 

The difficulties with the Navier-Stokes equations (ever! for flows at low 

Reynolds numbers, in bounded regions   O   ) are 

(i)      the nonlinear term   (u>V)u^   in   (3.1) , 

(ii)     the incompressiblity condition (3.2) , 

(iii)    the fact that their solutions are vector-valued functions of 

X, t ,   whose components are coupled by the nonlinear term 

(jJ-_V)_u    and by the incorapressibility condition    V-u =-0 . 

Using the operator splitting methods of Section 2 for the time discretisation of 

the Navier-Stokes equations, we shall be able to decouple those difficulties 

associated to the nontinearity and the incompressibiiity, respectively. 
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3.2. Time Discretization by Operator Splitting Methods. 

We shall concentrate on the 9-schenie since, from our  numerical experiments, it 

seems to be the one giving the best results.   We have then 

«.'' " ^0 ; (3.6) 

tJuin for   n>0 , starting from   u^"   we solve 

'"'IAV'^^ - cci/Au"+*^ + Vp"+^ -r'^'^ + ^u^u" - (u".V)u"   in   Q   , 

V-u'^^^^ ^   0   in   Q   , (3.7) 

u^+^-g"'*-^     on   r, 

i -  V^''^ +   ai/Au"+^ - Vp"+^   in   U,   . 

u«+i-9   =   g'^+^-e   on   T , 

r 

OAt 

V.ji""'"^   --   0   i7i   O , 

u "=   g on   r   . 

(3.S) 

(u"^^-^.V)u^+^-^   in   a   , (3.9J 
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3,3. Some CotnmeTita and Remarks Concerning Scheme   (3.6) - (3.9) 

Using the above operator splitting method, we have been able to decouple 

nonlinearity and incompressibility in the Navier-Stokes equations (3.1) , (3.2). 

We shall comment in the following sections on the specific treatment of the 

subproblems encountered at each step of algorithm (3.6) - (3.9). We shall only 

consider the case where the subproblems are still continuous in space (since the 

formalism of the continuous problems is much siiTipier); for the fully discroLc cayo 

see [14] (with 0 = 1/4) and [IS] where finite element approximations of (3.1) , 

(3.2)    arc discussed, 

V/e observe  that       u" and    u.""^^    are obtained from  the .solution of linear 

problems very close to the   steady Stokas problevi.. 

If one uses scheme (3.6) - (3.9) , the best choice for OL and /3 is given by 

(2.29). With such a choice, many coinputer subprograms can be used for both the 

linear and nonlinear subproblems, resulting therefore in a quite substantial core 

memory savings, 

3.4. Solution of the Nonlinear Subproblem (3.8) 

This not the place to give a detailed discussion of solution methods for the 

nonlinear subproblem (3.8); we should observe however that it belongs to the 

following class of   nonlinear Dirichlet systems 

r 
au. - £/A_u + (jA • V )ji " {^   in   U i 

(3.10) 
u    =   g^   on   r   , 

where     a     and     u     are   two  positive  parameters  (with     a.   ~   1/At     .     here)     and 

where   j^   and   g    are two given functions defined   on    r2   and    F   , respectively. 
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Several solution methods for (3.10) are discussed in [141 - flSl , including 

Newton's method and nonlinear least squares conjugate gradient (see also 

[19] for further details). In the case of the nonlinear least squares conjugate 

gradient methods, we have been using algorithms preconditioned by discrete 

variajits of the elliptic operator 

~~* ".y, " ■'-^^^ (3.11) 

with homogeneous Dirichlet boundary conditions. In the case of flows at large 

Reynold numbers the viscosity parameter y is usually small; moreover the fast 

dynamics of these flows require a small At implying that a is a large number. 

From these facts, the discrete forms of the elliptic operator (3.11) are matrices 

whose condition number is small implying that simple solution methods such as 

successive over relaxation (S.O.R.) and nonpreconditioned conjugate gradient 

methods will have a very fast convergence for solving the lirsear systems associated 

to those matrices approximating operator (3.11) (relaxation methods are particularly 

interesting since they have very good vcctorization and parallelization properties): 

indeed acceleration methods such as multigrid or preconditioned conjugate gradient 

are useless for these specific problems. Similarly the iterative solution of the 

discrete variants of (3.10) by the nonlinear least square conjugate gradient methods 

described in    [14] - [18] is quite fast and obtained in 3 to 4 iterations. 

3.5. Solution of the Stokes Linear Subproblems (3.7) , (3.9) 

At   each   full   step  of  algorithm     (3.6)  -  (3.9)     we   have   to  solve   two     linear 

problems of the following type 
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r 
ajj - wAu + Vp   = f    m   n , 

< V._u =0   in   Q , (3,12) 

_u    = g    on   r   (wif?i £-jn dr - 0) 

r 
where    a    and    u    are two    positive    parameters, and  where     J^    and    g     are two 

given    functions defined on    O   and    T   ,    respectively,    We recall that if   X    ^"^ 

g^   are sufficiently smooth, then problem   (3.12)   has a unique solution in 

V^    X (L^(Q)/R) ,   with     . 

Vff    -   {v|v   .    {E'mf    ,    v=g    on   T)     ; (3.13) 

p    s L (S^)/R   means that   p   is defined only to winthin an arbitrary constant. 

We refer to [18] and the references therein for the discussion of iterative 

and direct methods for solving problem (3.12). Our favorite method is at the 

moment a conjugate gradient variant discussed in [18] of the following 

algorithm   (introduced in   [20] ): 

p° E L^(n)     given; (3.14) 

then for   n^O , assuming that     p''   is known, we compute     u"   and   p""^'   by 

au" - /yAu," =  X ~ Vp"   in   n   , 

(3.15) 
u_"   =   £   on     r , 

f 
A<f>" = V-u"   in   Q   , 

(3.16) 

"^   - "   -"    ^ <;>"dx " 0   , ^    = 0   on   r 
8n 

O 
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and with   p>0 

p""*"' = p" - p(i/V.u" + a<?l")   . (3.17) 

Concerning the convergence of algorithm    (3.14) - (3.17)    we should prove by a 

variant of the techniques discussed in   [14, Chapter 7]    the following: 

PROPOSITION 3.1:     Suppose that we have 

0 < p< 2    L™^ (3^^g^ 

u 

with 

c =     sup       [  ...}: ^"^   ] , H = {<i>\<i> B nHn) ,  ?^ = o on r}    . 
^=H-{0}       "^**'v(s:!) ^" 

TheUy for all   p°8 L^(f2) ,   we have 

litn      {u" , p"} =- {u.po)   in   {K\il)f X L'CSi)   , (3.20) 
re—rroo 

where   {u,po}   ?"s the solution of the Stokes problem.   (3.12)   such that 

Po dx =      p° dx   . (3.21) 

In fact, the convergence is linear since 

"-^"-^'W^N    -"^    "^" - PollL-.(n) 

Goniierge fo zero af least a-s /asf a.s geometric sequences tohose ratio is less 

than one. 
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Using the conjugate gradient version of algorithm (3.14) - (3.17) described 

in, e.g. [18, Section 4] , the analogue of p is adjusted automatically at each 

iteration, making useless the calculation of c ; we obtain moreover a much faster 

convergence. 

REMARK   3..I: It   follows   from   [20]   ^   [22]     that   if   we   assume   that     n      is   a 

hypercube of     R        and that we have   periodic boundary conditions   in   (3.12) , 

(3.15) , (3.16) , then algorithm   (3.17)   converges in   07ie iteration, for each 

p' ^ L'(n) . 

REMARK 3.2: The remark made in Section 3.4 concerning the solution of the linear 

systems associated to the discrete variants of the elliptic operator (3.11) still 

applies to (3.15). Therefore, to solve the discrete versions of (3.15) we shall use 

successive over-relation, or non-preconditioned conjugate gradient methods. In fact, 

our preferences go the over-relaxation methods since they are much easier to 

parallelize and/or vectorize. Unfortunately the same remark does not apply to the 

Neumann problem (3.16); for the discrete variants of this problem, we have been 

using a Cholesky factorization taking into account the fact that the matrix is of 

maximal rank minus one, and also the fact that in practice the pressure is 

approximated on a grid twice coarser than the velocity grid (see, again, [14], [18] 

for more details), 

3.6.   NUMERICAL EXPERIMENTS 

Combining the numerical methods described in the above sections with the finite 

element approximations discussed in [14, Chapter 7] and [IS, Section 5] we have been 

considering the following test problem (corresponding to a double jet in a square 

cavity). 
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Here     Q     -^   (0,1)^     ,     i/  =   1 /8000   ,     and   the  boundary   conditions  are  ttie 

following 

g(xi , X2)   =  £   i/   X;   =   0   or   1    , (3.22)i 

'^gCxijD ="  £   if   0^ Xi  ^ 1/3 ,   19/48    <: Xi  <_ 29/48 

2/3  <: xi <: 1 , 

g(xi,l) -   -1024 {-L ,   zl}(xj - 1/3) (19/48 - xj   i/ 
^ NJ2        ^j2■ 

i ^ X,  <; ^ { = 1 + j^ )   , (3.22), 

|^(x„i) = 1024 {^ , ^} (2/3 - Xi) (xt - 29/4S)   i/ 

3 ^ ^' ^ 48 ^ ~ 3 ■ 16 ^ 

£(Xi,0) = £    if    1^  ^ Xi  ^  1| , 

^  g(x»0) - -1024 {0, j= }xi(j^ - xi)   if   0 <: X, <; i , (3.22)3 

,(xi,0) » - 1024 {0, -1=} (1 - Xi) (xi - i|)   i/   1| <; xi  <; 1 

\. 

corresponding to    injection   of fluid by the upper apertxires, and   ejection    by the 

two lower holes. 

From     (3.22)   ,   we   seo   that   both   apertures   are   1/16   wide,   that   the  two   jets' 

Inclinations are 45° , the left (resp, right) one being oriented toward the left (resp. 
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the right) wall. We can also see that the maximum injection velocity is one, and 

that the fluid is ejected from the cavity by two holes, located in the lower corners, 

whose width is also 1/16. Parbolic profiles of velocity have been asaxuiied at all 

aperatures and holes. 

Finally, we asEsume that the flow is initially at rest, i.e. 

nixfi) = j]^   in    Q . . (3.23) 

From these characteristics, we can see that we actually need two Reynokls numbers 

(at least) to characterize this jet problem; indeed, if one takes the dimension of the 

jet apertures as characteristic length, we clearly have Re = ~^ =- 500 , but if we 

consider the length of the cavity as another characteristic length the corresponding 

Re is now 8000; actually for the two upper corners we can also define a local 

Reynolds number of 8000/3 = 2666.66. . . , since 1/3 is the distance of the 

apertures to the closest corner (and corresponding vertical wall). 

Our goal with those numerical experiments is to simulate the bouncing of the 

jets on the closest vertical wall and to observe the development of the vortex 

pattern by visualization of the streamlims (the streamlines have been obtained 

as the contour lines of the str earn function $ , the solution of the Laplace 

equation 

completed  by adequate Dirichiet boundary conditions (see [18, Section 6]) , with  the 

vorticity   w   defined by 

Su-?     3ui , 

Following    [14, Chapter 71    and    [18, Section 51   the   velocity   has been approximated 

by   continuous   functions,   pieceAoise linear   on a regular triangulation consisting 
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of -2 X (128)^ triangles; the pressure has also been approximated by continuous 

and piecmoise linear functions, but this time on a triangulation tioice coarser 

than the velocity one. The total number of unknowns is then of the order of 32000 

for the velocity and 4000 for the pressure. Concerning the time step, we have 

taken At = 10'^ and used the e-scheme (3.6) - (3.9) with 9 = 1- 1/^^2 and a , 

13   given by   (2.29). 

We have shown on Figures 3.1 to 3.14 the streamlines corresponding to the 

computed solution at t =■ 0.01, 0.5, 1,0, 1.5, 2,0, 2.-5, 3.0, 3,5, 4.0, 4.5, 5,0, 9.5, lO.O, 

respectively. From those calculations we have been also able to follow the 

evolution in time of the kinetic energy ^ J |u |^ dx and of the enstrophy 

- J |w|^ dx ; the corresponding results, together with further comment-'^ will be 

reported elsewhere. Numerical simulations done with smaller At give back the 

same numerical results. 

All these calculations have been done on a CRAY-XMP 201. 

4.     APPLICATION TO LIQUID CRYSTAL CALCULATIONS. 

We follow the presentation in   [9] , [23] . 

4,1. Formulation of the Problem. 

"Imbedding" a steady state problem in a izme dependent one is a well 

known method to solve the former one. A perfect illustration is given in this 

section where to a nonconvex variationai problem originating from the 

mathematical theory of liquid crystals we associate a nonlinear parabolic 

"equation" which is solved by the operator splitting methods described in the 

above paragraphs. 

Let Q be a hounded domain of JR^ ; we denote by F the boundary of il 

and we suppose that F is sufficiently smooth (Lipschitz continuous, for example). 

We define now 
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then, with   ^ - (v;}'Lj  z HKU) , 

Jfv) - I I   IVj^rdx i - kZ  f   iYv,|^dxl , (4.1) 

and finally 

E = (i:lv,s H'(:2) ,       V   -= g    on    r ,    iv(x)| ■-' 1    a.o.} 

-5 

(where      'v | - '    Yl    vt)       ) ;    we aiiDPoae that    'j.     is such that    E 

.1 '":■'! 

i=i 

Remark  4.1.      ConKJclcr   ^  s ]R^    and dcrinc    <pg^    as the restriction   to      fi    of the 

function 
X   - ^ 

ix  - a 

We clearly have ,[£a(i^' "= i ^^-s.; furtherraorG, we can easily prove that 0^^ li,'''--- 

(even if    as O), 

We consider now the following minimization problem: 

Find     u^s E     such that    .J(u_)  < ]{wj   for all    v^^- E. (4.3) 

Usina the fact that E is weakly closed in HHf2) , we can easily prove that 

problem (4.3) has at least one solution; further mathematicaJ properties of (4.3) are 

discussed in [24] , [25]. Problem (4.3) is associated to the mathematical modeling of 

interesting physical phenomena (as discussed in the Section I of [25] ) , some of 

them occurring in the physics of liquid crystals (see [26] - [28] for further 

information on liquid crystals). 

4.2.  Numerical Solution of Problem (4.3). 

At first glance, problem (4.3) seems to be a nontrivial problem of the 

Calculus of Variations. In fact, the solution of (4.3) is quite easy to achieve by 

the operator splitting methods of Section 2. This follows indeed from the fact 

that problem    (4,3)    is eauivalent  to 
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Find   u^ " Hj   such that 

■Jt.'i^ + I     ^.iL^  ^ -^fi'./^ + ■     ^^5   for all   vs Hg , 

where (with      L,^(n) = (L^(n)f ) 

li'; ^ {^.1^  ^ li'f") . V  == g^     on    n    , 

S =    (v!v   sL^'CQ) .  |v(x)! ^ 1    a,e. } 

and where     I      ;   1" (S7) —► iR'J {+ot.}     is defined by 

(4.41 

Using the notation of the above section, we have for   (4.4) the following Eule-r 

Lagrange   ''equation" 

- A_u + ai     (u) = £   in     n   , 

(4.5) 

u - £     in   r , 

where        3I_^.  (_u^)     is   the   "gradient"   of        ly        at     ja.     We   associate   next   to   the 

nonlinear elliptic equation   (4.5)   the nonlinear parabolic vroblein 

at 
3u 
~ - Au  +31    (u)   =   0    in   il 

\^ 

_u = g^    o?7.     r , (4,6) 

u(0)   -   jio • 

Concontrating on the    G-scheme    (2.15) - (2,18)    (since it appearK as the most 

efficient method  here) we obtain  the following algorithm: 

242 



'Li'' ==' "u .   given in   f-l!, ; (4.7) 

I'lien for    n>0 ,    u^ "    op/mg knoion, we compute   u""^', u'"'''"'"'-', u"'   '   as follows; 

^eAt^'  - ^^" ^ 3^2 ^"'^^ '- .^ ' ^^-^^ 

f 

(1  - 20)At 

u"+i-^ = g   o-a  r , 

(4.9) 

Au"^'"'^ + 3U    (u^+')   --^   0   . (4.10) 
0At "    ~ 2 

When using algorithm (4.7) - (4.10) for practical calculations one has Lo s^ivG a sense 

to the two multivalued equations (4.8) and (4.10). The interpretation given to 

(4.8)    is 

ii"       " 2     ;     Ji."        minimixes over    2      '■h'^ functional 

(4.11) 

V -► i JQ|V,|-- dx - f^(u"" + 0AtA_u").v dx. 

The solution of problem (4.11) is clearly given by 

,,+Q     .   u" + flAlAii" 
U =    ^^ =^^       , (4 19) 

[u" + 0AtAu"| '^ 

Similarly, the solution of    (4.10)    is given fay 
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Once      u."  '      is   known,   we   cbtaia      31 (ju   '^}     i'roin     (-L2)      and   WQ   use   that 

information ia (4.9) to compute .Ji''"^'" via the aoluUoii ol' a DlCiChUi probliMn 

for the   elliptic operator 

v,-+v  - (1 - 20)AtAv_. 

From these observations, the only costly atop oT algorithm (4.7) - (4,10) is the 

Dirichlet problem (4.9); in fact, since in practice At has to be small, the discrete 

variants of the above elliptic operator are well condrtioned matriccK for which 

relaxation (and over-relaxation) methods are very efficient (see [9] , [23] for 

more details). 

4.3. NUMERICAL EXPERIMENTS. 

The numerical techniques decribed in Section 4,2 have been applied to the 

solution of various test problems in [9] , [23] (see also [20] for related numerical 

experiments),    [n this paper we shall only consider  the test problem for which 

n = (0,1)^ (4.14) 

and 

^ =-;^a!r   ' (^.15)i 

It  follows   from  [25]   that   if    £     is  defined   by     (4.15)   ,   then   problem     (4.3)     has  a 

i/nigii.e solution    which is precisely given by 
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"   == ^a! n  ■ (4.16) 

From  the siinplicity of    Q .    it is quite convenient to approximate problem    (4.3)    by 

a    finite difference method such as the one described below. 

Lot    N    be a  positive integer; we define a space discretization step    h      by      h 

= 1   / N+1      and then the discrete set 

i^Mh}(^  ^ i^ j^ l4   <^ M+i .    w'^h    M.;..j,    '-    {\h, jh, kh} 

With    v^.i,    -    {W'tjfc)^_ }r) ^-. , ...--M+i    !    we approvimato      J( v J    by 

^3     3 

r^tj+ifc ^ijh 

1 Ijaijjjn; iiiN 

^ii-\K-    V,j^ 

i+ijfc" ^ im 

+ 

'''ijfc+l    ^^■j'H 

and then   E    by 

r 

+ ^ HK-V"^ Mk 

J 

v\. ■1J&" Vijfc 

h 

(vv!    2   !v^J^ = 1  ,        1     <: i, J: k .-   M- 

v:5,    =-    g.;>      for all      Vl-.^f^r } 

(4.17) 

(4.18) 

Finally, problem    (4.3)    is approximated by: 
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Find   jj,^E Efj   such that   J.^Su^^J <. J,^(v^;J   for all   v^,.^-. E;., .        (4.19) 

Applying   tho      0-scheme      discussed   in   Section   4.2   is   quite   easy   since   the   finite 

dimensional problem (4,19) has the same structure as    (4.3). 

All the calculations have been   initialixed   by     ja°    ,    the   finite 

differe^ica   approximation of the solution     u^   of the Dirichlet problem 

-Au" = 0^   in   Q , 

(4.20) 

u'^ = g    on   r . 

.-Is convergence    criteria, we have used (with obvious notation) 

1 ^i,j)fc<N 

Since the exact solution of problem (4.3) is known here (and is given by (4.15) , 

(4.26)) we can accurately estimate the L^(f2)-norm of the approximation error; we 

have chosen as estimator of the    L^(0)-error    the quantity     p^     defined by 

Pn   =   di' Z |u(M,,;J - u,.,i^)'/2 (4.22) 

(we took here      u,(I/2, 1/2, 1/2) - {1/^[^ ,    [/{^i , l/^R) ) ■ 

Using a discrete variant of algorithm (4.7) - (4.10) in which the elliptic 

problems (4.9) and (4.10) are solved by the Gauss-Seidel method we need S time 

steps to reach a steady state if one takes h = 1/20, Q ■-"- A and At == 1/200; 

the corresponding    CPU time is    limn    ISs   on a    VAX 11/7S0.    We have then 
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f'h. 0.39   A   iO    .     When   utiing  the  Gauss-Seidel  method  we  have  initialized  the 

calculation   of      ui,      by      0 and   then   the   caicutation   of .+ i-f) 
.i^h 

taking ay stopping criterion one similar to (4,21) but with s - iC^ , In Table 4.1 

we show, at each time step, the number of Gauss-Seidel iterations necessary to 

converge according to the above test. 

Step G. S. iterations 

1 

2 

3 

4 to 8 

26 

4 

2 

1 
■ 

TABLE 4.1 

Variation of the number of Gauss-Seidel iterations with the- time step. 

If instead of the Gauss-Seidel method, we use an over-relaxtion one with the 

optimal paramter a; the performance of our computational method is dramatically 

improved (particularly for the first time step), and for the above test problem (with 

the same values of G, h, and At) we have convergence in 5 time steps (instead of S), 

the CPU time being reduced to 3mn 44s (instead of limn 18s); actually, the L'-crror 

is also substantially reduced since we have now p-„ == 0.23 X 10'' (instead of 0.39 

X 10''). 

Fable 4.2, just below, shows the variations of the L^-crror p/^ as a function 

of    h ;   these results have been obtained using over-relaxation instead of the 

247 



Gauss-Seidel  method.    The cavn       h  - i /.in    u       i ine ca&e       h  - 1/40    has been  computed  on  the  CRAY-XMP 

201  ,  taking approximately  12 seconds (the di 

l.S    X 10^   unknowns, approximately ). 

iiscrete  problem     (4.19)     involves  then 

1/10 

1/20 

1/40 

At 

1/100 

1/200 

1/2000 

1/10 

1/5 

0.74 X 10"-^ 

1/10        0,23 X 10"1 

0.12 X  10" 

TABLE 4.2 

Variation of the   L^-error with     h. 

The results in Table 4.2 suggest that the    L^- 

best; the analysis of such an 

approximation error is in    0(h)   at 

error is an interesting problem in itself. 

4-4. FURTHER rOMMENT5;. 

Relaxation   methods  for   solving  problem     (4.19)   are   d.scu..sed   in     [30]  ;     they 

appear   to  be  quite  efficient,  one of  the 

fact that the   quadratic constraint 

reasons  for  such  an  efficiency  being  the 

!v(x)p = i a.e. 
(4.23) 

- a fairly sunple one since it does not involve derivatives of    v.    Suppose now that 

instead of   (4.23) we have to deal with 
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det a + V_v(x))    =    1    a.e. (4.24) 

(nonlinear constraints such as (4.24) occur in incompressible finite.- elasticity, cf. 

[9] and the references therein). Relaxation methods cannot be applied any longer, at 

least directly. On the contrary, operator splitting techniques like those discussed 

in Section 2 still apply; see [9] for more details, further comments and numerical 

results concerning the treatment of nonlinear constraints such as (4,24). 

5.     NUMERICAL SOLUTION OF ADVECTION-DIFFUSION PROBLEMS IN 

HIGH-DIMENSION. 

5.1. MOTIVATION.   SYNOPSIS. 

Let's consider the following   stochastic ordinary differ&ntial aquation 

dX = V(x^) dt + dW (5.1) 

where      X      is   an   N-dimensional   vector   and      W     a   noise.     Assuming  convenient 

hypotheses on  the  noise    W    ,    the  probability of finding at  time       t    the    state 

vector     }(  ,   in a neighborhood of      x  s R'''   of measure       dx - dx^ , . . .  . dx,, , 

is     p(x,t) dx    where the    probability density   p     satisfies a   para.bolic eqi/.ation. 

In the particular case where   V    is   divergence free   , i.e. 

V.V = 0 (5.2) 

and for simple noise models, this parabolic equation reduces to 

If   - ^ Z'p -^ 1-ZP   = '' • (5-3) 
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An irtlerestiriB (and dirficult) case is the one where the level of noise is "weak" 

implying that s la "small" ; we have then an advection doniiiiaied advcction- 

diffusion equation. 

The solution of such equations piays a fundamental role in the implementation 

of some solution methods of the Zakai equation occurring in Stochastic Optimal 

Control. 

In the sequel wo shall consider the following   initial boundary value problem. 

aX -  ^ ^'P + ,Y'£P   =   f     i-n     ^ x(0,T) , (5,4), 

p ^ g   on     3Q X (0,T) , (5.4).. 

p(x,0) = Po(x)     in     n , (5 4). 

with    nC IR"'  . 

For  solving  such   problems,  the  numerical  analyst  has  to   face  two  outstanding 

difficulties, namely 

(i) When    s    is   small,    the problem is   advectian dominated, 

(ii) For practical problems, we usually have    N>3 . 

In the following sections, we shall describe for N ----2 to 6 the solution of (5.4) 

by various upioinding methods and by the modified (i.e. backward) method 

of characteristics. Numerical results will bo presented for the particular case 

where     Q = {0,1)^. 

5.2. SOLUTION OF PROBLEM   (5.4)   BY FINITE DIFFFRENCF.S AND 

UPWTNDTNC METHODS. 

We   consider   for   simplicity   the   caae   where        D.    -   (0,1 )''■      with N-2 the 

extension to     N>2     is straightforward.    With     I     a positive inleg c r 
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define h       Uy      li~-.l/I+l       and  consider  over    Q  --^ QUSO      the    discretizaLion 

M.j -^ (ih , jh} :      0<;ij   <; I+l     . (5.5) 

At  the  points M:_:    interior  to    Q (i.e.  ,   1    <_'  i,.j   £_  I)    wo Jipproximatc    (5.4)    by 

the following   finite, differerice y.cJiemc    (vviUi      V   --  (V_ , V_]): 

"At  " "  ' ^"'       "h = 

.'■ + 1 n + i r.'^ + i        ,,^+1 

+ V^(M,)    PiL_^^ . v^ (M,,)   'll±L^ 

- f(M;; ,    (n+l) At) 

(5.6): 

V. 

with in    (5.6)i    r 

(i) At (>0)       a   time discreMzation step; 

(Hj p;^    ~    p(M,< ,    nAt)      ; 

:(iii3 a    = max (0,a) ,   a" =- max (0, -a) ,     /    a^K ; 

(M Pfcf' = &(Mfc, , (a+l)At)   if   Mfc,  . 312 ; (5.6), 

m PII    = Po (M^,)      . a (5.ft)3 

Scheme (5,5) is of the backward Euler type for the tiuic- discretixation 

and of the first ord.er upunnd type for the space discretizatioji. ProbabiUst.s 

favor the finite difference scheme (5.6) because it satisfied a discrete. 
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maximum principle, and therefore possesses a probabilistic inte.-r-prtilation. 

Unfortunately the above scheme is only first order acciirale, quite dissipative 

and not well-suited for those situations where K is small ruid V has fast 

variations over the space domain     O , 

An interosiine alternative to (5.6) is obtained lhrou{;Ji a space/time 

discretization which is second order and also of the upwind type (however, it does 

not satisfy the discrete maximum principle).    Such a schema is obLained as follows: 

r 
Pfci = Po    CMfct) 

Pfcj      is obtairied if or exam-pla) via   (5.6) 

(5.7); 

then for     n>l    and     2 <:i,Js M       discretize   (5.4)i   by 

r 

^ At 
Pj+u      P'-'J      P!.;+! ■^ P'.'-i " ^P'J 

+ V, (M,j)   ^ j^  +   v;(M,,) ^  
>„"+!      ,     1,,-^ + ! 

+   V2(iV[<,)   ^=  
"Psj-l   +   T   Pu-2 

+ v;(Mu) ^ 
i^Pi/  '   -   '^Pij+'l   +    ^   PsjV 

1        .' + 1 
1  Psj+P 

h 

nM.„ (n+1) At 

(5.7)., 

If     M.jcrZ     with either     M.,,,    or   M.,_     on    F     it is possible that     Vf 

or    -^I,_j_2j     does not belong to    fi ;    in such a case we can use  l.o discrclizc      V-V 
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at       \L^.     a   firsl  order  scheme   like   in     (5.6)1  or   alternativGJy  a     Cfnti'Tsd second 

ord.e-r   approximation like 

(V-Vp) (M,,)    ~    V, iM;j) 
2h 

(5.8) 

+   Vsdvljj) 
2h 

The boundary conditions are treated as in (5.6)2 • T"liQ Cact that the problemt; 

utuier consideration may have a fa,st dynamics requires the vise of small h and At ; 

indeed as in Section 3 and 4 we can take advantage of the fact that At is small Lo 

solve the above discrete problems by successive over-relaxation since that method 

has good vectorization and parallelization properties (in practice few iterations will 

insure convergence at each time step). 

Numerical experiments definitely show the superiority of Lhe second order 

upwinding over the first order method (it is more accurate, less dissipative and 

almost as easy to implement). 

5.3. 50T.UTTON OF PROBLEM (5.4) BY FINITE DIFFERENCES AND A BACKWARD 

METHOD OF CHARACTERISTICS. 

As discussed in [31] , f32] (see also the references Lherein) (.he b{LGkward or 

modified.) method of characteristics can be a most interesting tool for solving 

advectinn dominated problems. 

The basic principle of the method is fairly simple and will be discussed on the 

continuous problem only. 

Let's define the   total tivie, darivative- operator   —-   by 
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§f = I -  -V. 

and  consider  the characteristic flow asj;ociated to      {x  ,   t |     y. J\^'  --' K,       i.e.    the 

N-dimetisional vector      X(T; X , t)    solution of the ordinary differential system 

(5.10) 

K(t; X , t) = X. 

With  the above relations the parabolic equation      (5.4)|    can also be written 

Dp 
Dt s y/p   =   f   in   n X (0, T)   , (5,1 i) 

and   discretized      along   the   characteristics     a I   time     Cn+l)At        by   the   elliptic 

equFitinn 

p"^' Cx) - p" fx (nAt ; x , (n+l)At)] 

(5.i: 

p-^^' - g"+'     on     r   ; 

more sophisticated schemes can be used    fcf.    [331). 

In   practice,   to   compute p"(>;)   -   p"[x(iiAt   ;   x,   (n+l)At,}      we   sihail   integrate 

'^5.10)   numerically  ,     starting  from,  a grid  point     and   track  back   from     (n+l)At 

to    nAt. 

Several situations may occur: 

0}       If the characteristic curve crosses tiie boundary at 

C     (nAt     :   C-Xn+l)Ai)     WQ  ahyll   replace     At        by     (n+UAt   -   tt       LHid   take  for 

P^C::} 
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the vaJuG of      g      at      (x* , t*}    whore    x*    is the point at the crossing of    F    and 

of the characteristic curve. 

(ii) If XfnAt ; x , (n+l)At) s r2 it necessarily belong to a cell defined by 

grid points; we shall then use , for example, an interpolation technique to compute 

p"(x}   (sec Figure 5.1) 

fn + 1)    At 

iiAt 

Figure 5.1:    Backtracking Along the Characteristics. 

Lov/  order  interpolation   methods  can   lead  to  an  overall  method  which  may  be quite 

dissipotive, on the other hand high order interpolaUon methods are costly in high 
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dimension and not very easy to code leading to softwares which arc not easy to 

vectorize or parailoiizc. Wc however think tliat these methods of characteristics 

are promising, but clearly they deserve a [ot of further investigations. 

Tlio dmcretization of the terms associated to tiic elliptic operator -"5L^ ^'^ 

(5.12) is straightforward and is done by the same difference formula theti in ('5.61; 

and     (5.7).^   .     The   fully   discrete  system   obtained   from (5.1!^)     ::;   Ibcn  i^olveJ   by 

those successive over relaxation methods advocoted in Section S.2. 

5.4.  NUMERICAL EXPERIMENTS. 

All the numerical experiments are concerned with problem    (5.4)    when 

n = (0,1)"',    f = 0 ,    g = fl  ,    We have compared  here  the v-;riou;:  methods discussed 

in Sections 5,2 and  5.3 including some  variants where one only  uses first order  time 

differencing  combined   to  second  order  upwinding  for   the space  variables.    Wo  have 

also tested the variant of scheme (5,12) where    ~     iias been discretized bv 
ut 

~ (x , (n+DAt)    ~ 

(5.13) 

^ f^ p^'"^' (x) - 2p"(X(nAt ; x, (ii+l)At)) + \ p""' (X((n-l)At ; x , (n+l)Atji). 

The numerical experiments have been carried out for    N-2.3,4,S,6. 

5.4,1.    TWO DIMENSIONAL EXPERIMENTS. 

Data;    Q  - (0, if ,       f- 0 ,     g = 0   ,     .: = ID"'" , 

V   = V(fn 7) ■i-oith        7 = J(x-Xr))-^+(y-ypr ,    (xo , Vn) = i-l, -1} 
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'    16'-' x(^-x)y (i-yj    if    {x,y)  £ (0,1/2)- , 

PoCxjy) =     ^ 

0     in     Q\(0,i/2)" . 

The behavior of the numerical methods has been summarized in Table 5.1   , below 

Method h At CPU/time step(.secs.) 
CRAY-XMP 

2nd order • 
upwinding with 
1st order time 
differencing 

I/IO 
1 /20 
1 /'40 
1/80 

h/2 
h/2 
h ,-'2 
h/2 

0.0016 
0.0036 
0,0082 
0.021 

2nd order 
upwinding and 
time 
differencing 

1/10 
1 /20 
1 /40 
1/80 

h/2 
h/2 
h/2 
h/2 

0.0017 
0.0037 
0.0081 
D.020 

VIethod of 
chirryc teris tics 
(Isl order time 
differencing) 

1/10 
1 .'20 
1/40 
1 /80 

h 
h 
h 
h 

o.txn6 
0.0029 
0.0074 
0.022 

Method of 
characteristics 
(2nd order time 
differencing) 

1/10 
1/20 
1 /40 
1/80 

h 
h 
h 
h 

0.G021 
0,0057 
0.018 
0.065 

Table 5.1    {Two dimensional experima-nts), 

F'iguro 5.2    shows  the  trace, on the diagonal      y-x=0 ,    of  the computed  solution at 

t = l    for  various values of    h    (lat order  time differencing, second order upwinding); 

Figure 5,3  shows   the time evolution  of  this   trace  (computations done by   the above 

method with    h-1/40).    Figure 5.4 corresponds to the same experiment than in 
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Figure 5.2 except that here we have been using second order time differencing snd 

up winding; we observe that, tiie results for h-jp- and ^ are practically ideiUicai 

and that those obtained with h=/20 are indeed very close of those obtained by 

tjie previous method with 1=1/40 . Figures 5.5 and 5.5 correspond to the same 

experiment than in Fipuros 5,2 and 5.3, except that here one has used the method of 

characteriatics of Section 5.3 (first order time differencing in Figure 5.5, 2nd order 

lime differencing in Figure 5.6) ; we observe thai the method of charac LeriKticK 

used here (with bilinear interpolation on the finite difference cells) is mor'e 

disKipative than the 2nd order upwinding mcthoda; we observe also that, coupled ho 

the method of characteristics, second order time differencing seems to be slightly 

more diKsipative than the first order one. 

5,4.2.     THREE-DIMENSIONAL EXPERIMENTS 

Data:     i2 = (0,i)-' ,     f-Q ,   g-0 ,    a; 

7 = "J(x-xo)-+(y-yo)''+(x-Zo)'-' ,    ixp , yp , ^o) - (2,2,2,} , 

10"^, it)"'   and    lU"^   ,     V ■- v (1/7) with 

Po(x, y, z)   = V 

16\:yzCl^x) (1-y) Cl-z)   la     LJ-(0,i,/2)^ 

0     in   Q /w 
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Table 5.2 summarizes some of the numerical results

CPU/time stop (secs), CRAY-XMP

Method h At

=I0 -3  
1=i0-  c =10"

2nd order 1/10 h/2 0.012 0.012 0.012
upwinding
and time 1/20 h/2 0.059 0.057 0.061
differencing

1/40 h/2 0.28 0.29 0.29

Characteristics 1/10 h/2 0.022 0.019 0.017
with 2nd
order time 1/20 h/2 0.15 0.14 0.13
differencing

1/40 h/2 1.07 1.03 1.03

Table 5.2 (Three dimensional experiments)

On Figure 5.7 (resp. 5.8) we have shown, at t - 4, the trace, on the line x-y-z

of the solution of (5.4) computed for various values of h by the second order

upwinding and time di fferencing method (resp. the method of

characteristics with second order time differencing). We observe again that

the method of characteristics is more dissipative and less accurate than the

upwinding method for which the results at h - 1/40 and h - 1 '80 are

practically identical. For those readers who may be surprised by the fact that the

three dimensional results show more dissipation (for the same value of ) than the

two dimensional ones, we would like to mention that a Fotrier anely.si.s would show

a faster time decay to zero, due the fact that, for the same rank, the eigenvalues

of the .aplace operator are increasing functions of the dimension N if one

considers as space domain f0 (0 , 1 )N
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Figure 5.9 corresponds to the same experiment than Figure 5.7, except that . 

e = 10"* ; Figure 5.10 shows the time evolution of the trace, on the line x=y=z , 

of the solution of (5.4) computed by the second order upwinding and time 

differencing rmthod for h = 1/40 , At = 1/80 , e = 10'\ Figures 5.11 and 5.12 

correspond to the same experiments than Figures 5,9 and 5.10, except that we have 

used here the method of characteristics with second order time differencing. 

Finally, Figures 5.13 to 5.16 correspond to the same experiments than Figures 5.9 to 

5.12 except that now    e = 10"® . 

5.4,3.     FOUR DIMENSIONAL EXPERIMENTS. 

Data:     D = (0,1)' ,     f = 0 ,   g = 0 ,   e = 10'^ , V = V(l/7^). with 

4 4 
7' =   Z (X, -2f     if   X = {xj_ 

and 

r   .   4 
16'   n   x^ (1/2 - X,)       in   w = (0,1/2)"   , 

i—1 

Po(x^) = ■< 

0     in    f2\w 

Table 5.3 summarizes some of the numerical results 

Method 

2nd order 
upwinding 
and time 
differencing 

h 

1/10 

1/20 

1/32 

At 

h/2 

h/2 

h/2 

CPU/time step, CRAY-XMP 

0.12 sec. 

1.1      sec. 

5.4     sec. 

Table S.3    (4 ' ^ dimensional experiments) 
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Figure 5.17 shows the trace, at t-4 and on the line x1 - x2 - x3 - x4 , of the 

solutions computed by second order upwinding and time dt/Jerencing , for 

the above values of h and ~t , we observe the good agreement between the 

soltuions for h-1 /20 and h - 1 /32. Fi&ure 5.18 shows the time evolution on the 

line x 1 - x 2 - x 3 - x 4 of the solution computed by the above method with h~l / 32 

and ~t - 1/64. 

5.4.4. FIVE DIMENSIONAL EXPERIMENTS. 

Data: w - (0,1)5 
, f - 0 , & - 0 , t - 10-3 

, 10-6 
, 

5 
n ZtO /2 - zt> fn w - (0,1 12t• , 

t =-1 

Po(X) -

in 0\w . 

Since we did not have access to the full memory of the CRA Y -XMP we only 

considered h - 1/10 and then ~t - · h /2 - l / 20. Using the second order 

upwinding and time differencing method the CPU / time step ra lio was 0.9 sec. if 

The results displayed on Figures 5.19, 5.20 (traces on the line XI r• X::: -~ X; ~ x'l 

- x5 ) show that, as expected, the finite differe11ce mesh is lo coa r~.; c. E~tr >.J polating 

from the results in lower dimensions the ;olution of the abov e test problem wou ld 

require at least h - 1 / 32. 

276 



CD

I - z

w

t0 -

Ix x

ii;t
Il z

a 13J

00

277

all)
'M 'M-ak IRM



w

- z

0o 0 i

278



U. u

()D

zw

LO

N

- I
CD

-Cu:

o G)

U! ~0

279

RV

R-w

II III ('qj R ,
* 0



LAJ

CD 0

C)

CD

I'. . . .. . . 0 -CD

00

w* I-

280



5.4.5. SIX DIMENSIONAL EXPERIMENTS.

Data: f =0, &=O, c= 10 "8 , h = 1/10, At= 1/20,and

10 V(-= 4 ) with

6 6
(xi - 2)2 if x - x6

16 6(01/6

6 Iti /2 - x) in (

0 o in f2\w

This test case is definitely a limit one, at least with the class of computers that

the present authors can access; using solid state device , the CPU/time step ratio

is here 173 seconds. It is clear that by a very sophisticated coding and still using

the same method (second order upwinding and time differencing) the above

performances can be improved but it is clearly the type of situations where

massively parallel computing is needed.

5.5. FURTHER COMMENTS.

In the particular case where 2 (0,I)N dimensional splitting inithod,: cun

be used to increase the degree of parallelism of the problem under consideration.

We observe, for example, that if N - 4 , then

2 DZP 4 4 "p

Vp- +

which suggests to apply the general methods of Section 2 with
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It is our intention to start a campaign of numerical experiments to test the

validity of this approach.

6. CONCLUSION.

Operator splitting methods definitely provide efficient methods for solving

numerically mathematical problems modeled by parabolic equations or which can be

reduced to the solution of such problems. In the case of problems in very high

dimension (N >4) the validity of this approach needs to be tested through further

numerical experiments. An important conclusion which appears already is that the

evolution aspect of these problems makes relaxation techniques very valuable

solution methods if one uses implicit schemes for the time discretization.
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Algorithms for Rational Spline Curves 

Klaus Holligi 
Computer Sciences Department and 

Mathematics Research Center 
University of Wisconsin-Madison 

ABSTRACT. The theory of univariate splines is well understood. However, apply- 
ing the standard techniques for spline functions does not make use of some important 
features of piecewise polynomial curves. Since curves are invariant under reparametriza- 
tion, the smoothness conditions for splines are less restrictive and standard approximation 
methods can be improved. This note discusses rational cubic spline curves and describes 
in particular two basic algorithms: the construction of smooth splines from control points 
and Hermite interpolation. 

1. Introduction 

We first review briefly two basic algorithms for "standard" cubic spline curves as a 
preparation for the generalizations to be discussed in the following sections. These algo- 
rithms are best described using the Bezier form for polynomials which allows a particularly 
simple characterization of smoothness constraints for splines. The Bezier coefficients b of 
a cubic polynomial p are defined by 

P{i) = Z^ ^^ B^{t),    0<t<l, 
u=0 

where Bt^{t) := {^)i'^{l — i)"^ are the Bernstein polynomials. Therefore, as is illustrated 
in Figure 1, a piecewise cubic spline curve p can be represented by a sequence of Bezier 
coefficients 

hi,   i. = o,...,3,   y = o,...,j. 

It is assumed that 63" = 6Q, i.e. that the curve segments join continuously. Continuity 
of the first and second derivatives of the parametrization is equivalent to the conditions 

bT — b7^ = fco — b^ 
1 \' <j ^ 

(6+ - 6+) - {67- 6-;) = (63- - b^) - (6- - b;) 

where 6* denote the Bezier coefiicients of two adjacent curve segments. The particular form 
of these conditions yields a very simple algorithm for constructing the Bezier coefficients 
of twice continuously difi^erentiabie spline parametrizations from control points (cf. Figure 

2). 

^  supported by the United States Army under Contract No.   DAAG29-80-C-0041 and 
sponsored by the National Science Foundation under Grant No. DMS-8351187 
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2 ^ L2 

Figure 1.  Bezier polygon of a cubic spline curve 

Algorithm 1. (c => b) The Bezier coefficients b corresponding to a sequence of 
control points c are given by 

b{ :- (2c>+^ + cJ'+2)/3,    4"' := (2c^'^' + c^)/^ 

bi~'=bi:={bi-' + b{)/2. 

Combining the steps in Algorithm 1, /•' :— 63"^ — b^ caii be expressed in terms of the 
control points, 

/J = (cJ + 4c^'+i + c^+2)/6 (1) 

which yields 

Algorithm 2. (/ => c) The control points c of the natural spline interpolant 
(which has zero curvature at the endpoints) corresponding to the data /^, j — 0,.... J, 
are computed by solving the linear system (l) for y = 1,,.., J — 1 with the end conditions 

,1 fO „0 n„l „1 c    - J  ,    c   = Zc   — c 

.J-I 
= /^     c 

J^2 = 2c j-t-i 

Figure 3 shows an example which illustrates a slight disadvantage of the method: possible 
oscillations near inflection points. 
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(^'"'^>a—^ ■6 0/^ 

/«o™e- -e-'—Ss^ 

Figure 3.  Natural spline interpolant 

A piecewise rational curve is represented by a sequence of coefficients and weights, 

{bi,wi),    u = 0,...,3,    j = 0,...,J, 

where, for continuity, 63^   = 6Q.  TO characterize higher order smoothness, we recall the 
definition of 

Smoothness for Curves. Smoothness of a curve, t ^ f{t) e IR^, is characterized 
in terms of differentiability with respect to arclength s := J |/'|, Since dtjds = l/lf 
where | | denotes the length of a vector, the first and second derivatives of / with respect 
to arclength are given by 

d 

ds f = f'/\f'\ 

f-{\f?f"-{f'-f")fV\fV- 

Taking the cross product of the second equation with f'/\f'\, this means that C^-continuity 
is equivalent to continuity of the vectors 

If l\  rl\3 ■  f/:=/7l/'l,     M/:=/'x/'7|/ 

The vector ^ is the unit tangent vector, K, is the curvature and r) is the binormal vector 
which is a unit vector orthogonal to the osculating plane. 
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Figure 2.   Control polygon, Bezier coefHcients and corresponding spline 
curve 

While straightforward, the above algorithms do not make use of the additional flex- 
ibility due to the weaker smoothness constraints for curves. This observation has led to 
the development of ^-splines and interesting new approximation and design techniques (cf, 
[BBB80], [B685]). So far, the new geometric ideas have been primarily applied to polyno- 
mial splines. We discuss in this note the generalization of the basic algorithms to rational 
cubic splines. First, we describe the rational Bezier form in Section 2. Then, in Section 3 
we discuss the analogues of Algorithms 1 and 2. Section 4 lists MACSYMA computations 
which establish the main result of this note. 

2. Rational Bezier form 

We review the definition and some basic facts about the Bezier form and refer to 
|FP79i for details. The Bezier form of a rational cubic parametrization r is defined as 

rit] = ^ = ^^=''' ^''"'^^ ^^^^^ ^^ 
i/=0 yj. B,{t) 

0 < f < 1, (2) 

where the coefficients b^, are vectors in TR^ and the weights w^, are positive numbers. The 
homogeneous form, i.e. multiplication with the weights in the numerator, simplifies the 
algebra and geometric interpretation. As in the polynomial case, the control polygon is 
tangent to the curve at the end points. The weights control the influence of the corre- 
sponding coefficients, i.e. increasing w^^ "pulls" the curve towards the coefficient b^, as is 
illustrated in Figure 4. 
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Figure 4. Rational Bizier form

Computing the vectors C and rl for the parametrization (2) at the endpoints gives

b( b-bo 2 WoW 2 (b, - bo) x (b2 - bl),(0) - [ -7' (),(0) -3 bo 0[
1b - bol' 3 wbi (3)oI
b3 - b2 2 WW 3 (b3 - b2 ) X (b, - b2 ) (3)

1b 6-6b2l' (icir(1 31~b 3 -b 2 1'

Therefore, two adjacent curve segments with Bzier coefficients b± and weights w join
twice continuously differentiable at b- = b+ if the following two conditions are satisfied:

(C1) b2-. b3 = bo , bj1 are collinear;

(C2) b-, b-, b b",b, b+ lie in a half plane and the parallelograms R-- in Figure 5
~satisfy

si ww- area(R_) wow2 area(R+)

(w 2 2 lb3 - b-1 3  (w t) 2  !b- - b .t- a .  (4)

3. Control points and interpolation

The geometric description of the smoothness conditions easily yields the analogue of
Algorithm I which is a variant of the corresponding method in the polynomial case [B6851.
Denote by 13t and 6 the relative length of adjacent line segments as is indicated in Figure
5. For example.

'b' -J :'b- - b-= 6 : .
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Figure 5. Geometric smoothness constraints

Then, since area(R+) : area(R_) = (6+,L_) : (6-+), condition (4) becomes
woi. ( -)2

62 := (6+/6-) = (,3 (w+-- w 2 (5)

This means, one can select the points b-, b-, b', b+ and the weights w± essentially
arbitrarily and it is then possible to select 6, and hence b- = b', so that the smoothness
conditions (C) are satisfied. This yields the following algorithm.

Algorithm I. (c, w,/3 =* b) The Bizier coefficients b, of a piecewise rational spline
curve corresponding to the sequence of control points c), weights w) and parameters/3? > 0
are given by

b-l )c)(a - ' 3)1' oc)( + Oj_414 (1 j)c2 133+lc-&)(l + /31

-' b_, (6'-'b'-' 1 V-')

where b '' is defined in terms of uYJ -- . wj, 3 - 1 according to (5).

Algorithm I is a special case corresponding to wJ = OJ = 1. The weights w and the
parameters /3 permit local control of the "shape" of the curve while keeping the control
points fixed. This is illustrated in Figure 6. Decreasing /3 increases the curvature at
the knots and the curve approaches the "control polygon" which connects the points c3 .
Increasing a particular weight stresses the influence of the corresponding Bzier coefficient.
If this additional flexibility is not needed, the parameters can be set according to suitable
optimality criteria.
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Figure 6. Control points and corresponding rational spline curve for ~
1/4, 1, 4

Algorithm 2 for interpolation requires the solution of a linear system, i.e. changes in
the data have a global influence. Using the additional degrees of freedom due to the weaker
smoothness constraints, it is possible to construct smooth interpolants by a local method.
This method is suggested by the expressions (3) for and tj. Setting 6i: jj2 - il

(r7(), :=~) (ru7),(i) for i = 0, 1 and substituting

the equations for ict7 in (3) can be rewritten as

(-7'= (-)i Ci x (f f f0) +-i- V x 0, i = 0, 1, (E)

where
2 WiW2+i 1(6

3 w2 62' Wj~~ 6

I I

Since both sides of the i-th equation are orthogonal to C, the equations (E) are equivalent
to a 4 x 4 linear system for @ and a. This system has a solution with p. .r > 0 if

(A) 77' lies in the interior of the cone spanned by
(-''x (f' - fo) and C' x C", i* 0. 1.

Choosing w, = := 0. the remaining weights wo,w_, and the parameters 6 can be
expressed in terms of ey and cr.

The corresponding method described in Algorithm 11 is a generalization of Hermite inter-
polation.
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Figure 7. Rational spline interpolant of a helix

Algorithm I. (f, , Po7 z b, w) The Bezier coefficients b1, and weights WO, W3 of
the j-th segment of a piecewise cubic rational spline rf which matches the unit tangent
vectors V and the vectors (icri)' at the points f 3 can be determined by solving the system
(E) with

f, := fi' 77 := 1+ , 77 := 17 j, ,

provided that condition (A) holds.

The following Theorem shows that. for data corresponding to a smooth curve, con-
dition (A) is satisfied if the interpolation points fJ are sufficiently close. Moreover, the
interpolant is of high order accuracy and has good shape preserving properties for smooth
data. This is illustrated in Figure 7. If condition (A) is not valid for a particular curve
segment, then the given curvatures and binormals cannot be interpolated and have to be
modified or possibly chosen differently for adjacent segments. An interesting !open prob-
lem is whether for given points f the vectors c and tcr7 can be chosen so that (A) is valid
and the resulting scheme remains accurate and shape preserving.

Theorem. Assume that the datat f'. .r7J in Algorithm II correspond to a smooth
curve f with nonvanishing curvature K and torsion r (cf. FP79, p. 102 for definitions).
If the distance h := max :P - '-1 between adjacent points is sufficiently small, then
for each pair of adjacent points, condition (A) is satisfied and hence the system (E) has a
unique solution with o,a > 0. Moreover, the corresponding piecewise rational interpolant
rf is 6-th order accurate, i.e.

dist(f. rf) = 0(h3).
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For planar curves, a similar result was obtained in IBHS87] for interpolation with
piecewise cubic polynomials. For the rational case, the proof is somewhat simpler, since
the weights w and the parameters 6 can be expressed explicitly in terms of the data.

Proof. Consider a typical curve segment of the interpolant, e.g. corresponding to
the end points fo, f '. Without loss we assume that f is parametrized with respect to
arclength s and that

f°-[O 0 01, CO=[1 0 0], no°=[O 0 1], (8)

and f: f(s). Denote by r(t,s) = p(t,s)/q(t,s), 0 < t < 1, the rational interpolant. We
will show that

(i) for sufficiently small s, the system (E) has a unique solution with e, or > 0;

(ii) q(t,0) = 1;

(iii) (atr, (t, s)/Is) ls= 0

(iv) a'[p(t,s), q(t,s)] = 0(s), i = 1,2,3.

Assertions (i) and (ii) guarantee that r is well defined for small s, i.e. as the distance of
the points fo and f I becomes small. Assertion (iii) implies that the derivative of the first
coordinate x = r of r satisfies

cos < atrI(ts) < cs (9)

for some constants c, and s sufficiently small. In particular, the function r, is monotone
increasing in t. With f I denoting its inverse, i.e. x = r, (f 1 (x, s), s), the rational interpolant
has the equivalent parametrization

R(x,s) : x r2(fI(XS),s) r3(fi(xs),s)1 .

Similarly, f can be parametrized with respect to the first coordinate.

x ,-. F(x).

Since the interpolation conditions are invariant under reparametrization. the unit tangent.
curvature and binormal of R and F match at xo := 0 and x, := rl(1.s) = fi(s). Using
that RI(x) = Fl(x) = x. this implies that the derivatives of R and F match at these
points up to second order. From the standard error estimate for interpolation of functions
it follows that

R(xs) - F(x)j = O((xI - x0 )6 ) = 0(s6)

provided that the derivatives of R with respect to x up to order 6 are bounded, uniformly
in s. This follows from (iv). To see this we note that

R,(ri ts). s) =r,(t. s). xr r(t s).
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and compute the derivatives of R, inductively using the chain rule. This shows that
& R~x, (s) is a sum of terms of the form

7 (k) 7rji).......t-)/(fi))k+t

where superscripts denote differentiation with respect to t and all functions are evaluated
at (t,s) with t = I(x, s). Since r U) is a sum of terms of the form

p(k)q(el) ...... q(4 n,)/qm+i, j =k + I±+ +l,

the boundedness of R, is a consequence of (ii), (iv) and (9).

It remains to verify assertions (i)-(iv). This requires elaborate Taylor expansions
which are done via MACSYMA as is described in the final section.

4. MACSYMA computations

Below we list a MACSYMA program for proving (i)-(iv) of the previous section. The
computation is divided into four main steps: Taylor expansion of the data; solution of

equations (E): B~zier form of r; verification of (i)-(iv). To speed up the computations,
we use Taylor expansion to simplify intermediate results. The order of truncation will be
justified at the end of this section.

Auxiliary functions. The following auxiliary functions will be used in the program:
(cl) is de Casteljau's algorithm for evaluating a polynomial at t from its B~zier coefficients
b; (c2) is the vector product; (c3) generates the first n - 1 terms of a power series with co-
efficients a1 ; (c4) computes the Taylor expansion of the solution of the differential equation
x'(t) = f(X(t)), X(O) = xO.

(cl) bezier-form(b.n.t) :=
if n=O then row(b.1)
else t*bezier-form(submatrix(1,b).n- 1t)

- (1 -t) *bezieriorm(submatrix(n-. 1b).n-1,t)$

(c2) cross-product(a.b) :=
a2*b'3i-aj3*b2], a[3j*b[1]-aTli*b3], a'1l*bi2 -a2],*b1 l$

(c3) power-series(a,n,t I
if n=O then a0:O
else power-series(an-1.t) - an-t n factorial(n)S
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(c4) solve-ode(f,xO,n,t)
if n=0 then xO
else (xl: solve-ode(fxO,n-l,t),

xl + subst(O,t,diff(f(xl),t,n-1))*ta/factorial(n))$

Taylor expansion of the data. The data at the left endpoint are given by (8). To
obtain Taylor expansions for f f(a) 1 f(s) and (ocr)' - (s)ui(s), (c1O) approxi-
mately solves the Frenet differential equations [FP79, p.103,

=

"= rv7 - rcC

7 =

where with (0) := 10 1 1 1 is the normal vector. This yields Taylor expansions for the
data in terms of the Taylor coefficients ui and vi of curvature and torsion (cf. (c6), (c7)).

(c5) (kappa(s) := power -series(u,5,s), tau(s) := power-series(v,5,s)) $

(c6) kappa(s);
(d6) uss 5 /120 + u4 s/24 + U3S 3 /6 + u2 2 /2 + uls + uo

(c7) tau(s);
(d7) vss5 /120 + V4 s4/24 + V38 3 /6+ V2S 2 /2 + vs "+ vO

(c8) (f 0]: [0,0,0], xi[0]: [1,0,0 i, zeta[0]: [0,1,0], eta[0]: [0,0,11)$

(c9) g(a) := [a[2], kappa(s)*a[3 , tau(s)*a[4]-kappa(s)*a[2i, -tau(s) *a13-$

(cO) ffs: solve-ode(g, flo', xi[O'. zetai0l, eta[01],6,s)$

(cI1) (ffl: ffs1., xil : ffsI2., zetail.: ffs'31. etajil: fsj4j)$

(c12) (kappabO: kappa(0). kappa 1': kappa(s))$

Solution of equations (E). All vectors in the i-th equation in (E) are orthogonal
to 1' and therefore the i-th equation is equivalent to the 2 < 2 system

eqn', 1  eqn'L, 2 Pi + eqn,,' , .1 (10)

obtained in (c13) by forming the dot product of the i-th equation with the vectors 17' and
(c14) solves the system (10) by backward substitution, using that eqn 3  0. The

parameters 6 and weights w are computed in (c15) and (c18) according to (7).
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(M1) for i:O thru 1 do

matrix2: matrix(kiappaii *etaTi,
(-1) '*cross-product (xi il, If 1 -f O]),
cross-product(xi! 1' ,xilol)),

ratsimp (taylor (matrixl 1.transpose (matrix2) ,s,O,6))) $

(614) for i:O thru 1 do
(rholiJ: eqni] [2,11 /eqni [2,2],
sigxnajiJ: (eqnli][1,1] -eqn[i[,1,2J*rho[i])/eqnli[l1,)$

(c15) for i:O thru 1 do
delta[ 1-i]: taylor (ratsimp (sigma[ i] /rho Ii]) ,s,O,3) $

(c16) delta[0 1;
(d16) s1 -- (uov1 + 2vcoul)s 2 /(36uovo) + (9U2 VOV 2

-±12utOU2 - 1OUgvI + 2tsovotsiv,
-o 2Ovu 2 --t- 6u 2v 4 + 6u 4v 2),8 3/ (54OU2V2)

(d17) -(uov 1 + 2vots)s 2 /(18UOVO) - (U2 VOV 2 + 2uOV 2
22 V2U2)8 3 / (36U2V2)

(c18) for i:O thru 1 do 
'2w[ili: taylor(ratsirnp((3/2)*rhofil *deltai~ , s,0.2)S

(c19) w1O1;
(dig) 1 - (24u 2VOV 2 + 12uov 2U2 - 35u 2v 2 - 8uOVnUIV1

-20v 2u 2 + 36u 2v 4 - 36u 4v2)S 2 /(72U2V2)

(c20) w1':- w'0';;
(d20) 0

Bhier form of r. Statements (c21) and (c2) define the polynomials p(., s) and
q(., s) using de Casteljaus Algorithms in terms of the B~zier coefficients.

(c21) p: (wb: matrix(w0'*fO', f'01--delta~fO"*xi' 0,

rats imp (taylor (bezier -form (wb.3.t)'1' .s,O,2)) )S

ratsimp (taylor (bezier -orm (w.3.t) .1.1 .s.0.2)))S
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Verification of (i)-(iv). As is shown by (c23)-(c26), the dominant part of the
system (10), as s - 0 is given by I

-oVoS /21 =[u02vos4/12 0 [o

which proves (i). Clearly, (c27) proves (ii). (c28) computes the numerator of atri(t,s)/s,
where r, = pl/q, and evaluates it at s = 0. In conjunction with (ii) this establishes (iii).
Assertion (iv) is equivalent to the statement that

aa[p,q](t,s) = 0, j < i < 3.

This is checked by (c29) which displays (a'[p(t,s),q(t,s)])/si - 1 evaluated at s = 0.

(c23) taylor(eqn[0][1],s,0,2);
(d23) luo, uos 2 /2, -uos - uls 2/21

(c24) taylor(eqn; 1] 1]-eqn[O][1],s,0,2));
(d24) (UIS + u 2s 21/2, 0, 0:

(c25) taylor(eqn0] [2',s,0,4);
(d25) [voU2S2/2 -1 (VIU2 - 2ulvouo)s 3 /6 - (VoU4 + (v 2-

-(3U 2Vo + 3vUl)Uo)S 4/24, Vou2s4/12, 0]

(c26) taylor(eqn[1] [2] -eqno] 12 ,s,0,4);
(d26) [(UgVl + 2uovou)s 3 /6 + (u2vV2 + 2uoVoU2

±4u0 ulvl + 2vou2)S 4 /12, 0, 0]

(c27) subst(0,sq);
(d27) 1

(c28) subst(O.s.ratsimp((diff(p1ll,t)*q-p 1i!*diff(q,t))is)):
(d28) 1
(c29) for i:1 thru 3 do I

disp(subst (O.s.ratsimp( diff( p.q ,t,i) /s(i 1)))):

0. 0. 0, 0
0.0. O. 0]10 0. G . 01

(d29) done

It remains to justifN the various orders of truncation in the intermediate Taylor ex-
pansions. Since multiplication never decreases the order of validity of truncated Taylor
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expansions, we must only consider (c15) and (c18). To indicate the range of significant
terms in an expansion

(P(s) = PosI + P,+IS j+ -

we use the notation 5

P [j, J]

if the coefficients up to index J agree with the exact expansion of Po. By (11), and since
the data are computed exact up to order 6 by (c1O), the coefficients in the system (10)
satisfy

[10,6] [2,6] [1,6]]
eqn- [12,6] 14,6] 0 "

This shows that
~ [2,61/[4,6] -[-2,01

cr ([0,61 - [2,6] * [-2,0])/11,6] 1-1,11
6 -[-1,11/[-2,0] ~ [1,3]

w [-2,0] * [1,3]2 -[0,2]

and hence all subsequent expansions are exact at least up to order 2 which is what is
needed for the proof of (iv).
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Convexity-Preserving Quasi-interpolation and Interpolation
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Abstract. Given a strictly convex function of two variables f(x,y), a

CI box spline series approximant of this function, based on data {f(ih,jh)j

given at points uniformly spaced by h in the x and y directions, will also

be convex if h is sufficiently small. Explicit numerical bounds on h are

provided In this paper which guarantee convexity of these box spline series

approximants. The bounds are of the form h s cc/L where c>O is the minimum
2value of Du f, L is a Lipschitz constant associated with the continuity of

the second derivatives of f, and the constant c depends on the particular

box spline approximant being used.

I. Formulation

Given data {f(ih,Jh)} n {f j}, V (ij) 6 Z2 , representing values of a

smooth function f(x,y) at the set of points {(lh,Jh)} with uniform spacing

of h in the x and y directions, and a C locally supported box spline

*(x,y), there are various ways of determining the coefficients {c j} of a

box spline series
-'It _ J'1

1,J

such that the order of approximation of f by sh is

lf(x.y)-sh(x.y)l = O(h 3 )

and the partial derivatives of f are simultaneously approximated with

IDmf(x, yl-Dgs h (xy I = o( h 3 - 1CC , lol=i,2

ISupported by NSF Grant No. DMS-8602337 and ARO Contract No. DAAG29-84-K-0154
2Supported by ARO Contract No. DAAG29-84-G-0004
3present address: National Science Foundation, Washington, D.C. 20550
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In particular, if we denote by D2f the second derivative of f In the

U
direction of the unit vector u, we have U
(2) ID 2f(x,y)-D2s (x,y)I = O(h).

U U h
If f(x,y) Is a strictly convex function, say D2f(xy) : c > 0 for some

constant c Independent of u and (x,y), then for sufficiently small h, the

approximation property (2) implies that the spline approximant s h is also

convex. The purpose of this paper Is to provide explicit bounds on h which

guarantee convexity of sh

The function f is assumed to be strictly convex and to have Lipschitz

continuous second derivatives, which Is sufficient for (2) to hold. More

specifically, we assume

a) f e C 2(R 2 )

(3) b) D f(x,y) k £ > 0 V u,x,y

C) ID f(x 2 , Y2 )-D f(x ,yl M s L[(x 2-x1 ) 2+(y 2-Y, II = 2.

The remainder of the paper Is as follows. In Section II we introduce

box splines and the class of approximants whose convexity-preserving

properties will be studied. In Section III we Illustrate the estimation

techniques which lead to the bounds on h which preserve convexity. In

Section IV these bounds are presented. We do not present the details of the

derivation of the bounds in this paper. Rather, the reader is refe-red to

the paper [CDR2] for a detailed treatment of shape preservation In bivariate

spline approximation.

II. Box Splines and Spline Approximants

Let V = {v,v 2..,.v} be a set of (generally nondistinct) Integer
2 2vectors in R which also spans R . The box spline *v(x,y) is defined to be

the probability density of the random linear combination Et where the

random n-tuple (t ,t 2,..,t ) in Rn Is uniformly distributed in the "box"

[-1/2,1/2] n. Box splines are locally supported and piecewise polynomial.

Explicit formulas for the polynomial pieces can be recursively calculated

fairly easily; see [CL] for details of the construction and for several

examples important to the analysis described in Section III.

For reasons of simplicity, we restrict ourselves as to the possible

members of V. We define the vectors el=(i,O) , e2=(0,1) , e3=(1,1) and

e = (-1,i) and require that v E {e ,e,e 3 ,e 4 }. With this restriction, we use
4 1 234
the notation * (x,y) instead of 0..(x,y), the four indices n ,n ,n ,n 4

V 2 3 4

indicating the number of times the vectors e ,e,e,e appear in V
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respectively. We will further assume that n >0 and n >0. Finally, if the set

V is implicit or Immaterial we simply write O(x,y) for the box spline.

Roughly speaking, the more vectors in V, the smoother the box spline *.

Specifically,

(4) e C where p = n - maxfn } - 2 , n = X n

1
The spline space Y is formed by taking linear combinations of the

integer translates of O(x,y). An element s(x,y) e Y is given by

s(x,y) = c *J(x-i,y-j)

The space Y contains all polynomials of degree p+l. An important property of

the spline space is that O(x-i,y-J) a 1.
I ,J

Next we define the scaled spline space Y h with elements s h(x,y) given

by
xy (xyVih y-jh(5) s h VY J0 h'' h

The function *V , ) will be denoted by B and dropping the V for

convenience, we may write

(6) s h(X,y) = JBh(x-ih,y-jh)

for elements of Y . The approximation power of the space Y is o(hP 2 ):hi h l

If the partial derivatives of order p+l of a function f(x,y) are
Lipschitz continuous, there exist functions s e Y such that

hhIf(x~y)-s (x~y)l -- o(hP2). ',

Details on the above results can be found in the survey paper [H].

We introduce next the class of approximants which realize the optimal

approximation order of Yh and whose convexity-preserving properties are the
subject of this paper. The results which follow are developed in detail in

[CD] and (CDR1].

We denote by F the vector of data values {f ij. Define the finite Al

difference operator M acting on data vectors as follows:

(MF) m f ,,",'"
I J E r s ! - r , j -s 

.1
where fU

S 1-0(0,0) if i=j=O
J -O(i,j) otherwise

The symmetry of O(x,y) about the origin and the fact that ZO(i,J)=l imply
t ~ ~.. ,.

that M can be cxpressed as a sum of central second difference operators.
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The family of approximants q (f)(xy) is then defined as follows:

q (f)(x,y) = E fIjBh(Xi-h,y-jh)
IIJ

(7) q1(f)(x,y) = (F+MF) B h(x-ih,y-Jh)

qk(f)(xy) = (F+MF+..'''+M"F) IjB h(x-ih,y-Jh)

q (f)(x,y) = (F+MF+...) B h(x-ih,y-Jh) = lim qk
IJ k-W

The limit required to calculate q will exist only if n3 or n is zero. In

this case q is the unique cardinal Interpolant of the data.

The approximation order of the qk is as follows:

a) If 2k+2 < p+2 then If(x,y)-q k(f)(x,y)I=O(h P+2), provided that

f E C 2 1 and the partial derivatives of f order 2k+l are Lipschitz

continuous.
b) If 2k+2 z p+2 then If(x,y)-q (f)(x,y)I=O(hp 2 ), provided that

f E C p  and the partial derivatives of f order 2p+l are Lipschitz

conxtinuous.

If 2k+2 ; p+2 then qk(f)(x,y) provides the optimal order of

approximation and is referred to as a quasi-nterpolant of f, unless k=a in

which case qk is referred to as the interpolant.

Our results in Section IV concern the convexity of the qk'

We require one more result, due to Dahmen and Micchelli [DM]!

If V and V are two sets of integer vectors with V cV2, then(8) 1

if c jB h(x-ih, y-jhIV) is convex, so is c IjB h(x-ih,y-JhIV ).

i

III,. Methods of' Analysis

In the analysis of convexity of the qk we concern ourselves first with

the C I box splines ,1111, 02' and .122 (In the latter two the index n4 is

zero and is omitted.) The convexity of these is relatively simple to

investigate as their second derivatives are piecewise constant in the first I
case and piecewise linear in the other two. We obtain for each the Hessian

matrix H (x,y) of an arbitrary s hX,y) in terms of its coefficients c "j

This is effected with the aid of the formula [H],v.VOV = v0V,(v) where v is

an element of V, 7 is the gradient, and 6v is the centered difference :7,
operator given by 6 (') = 0(.+v/2)-O(.-v/2). The Hessian matrices thus

obtained characteristically have as their entries a second difference of the

coefficients appropriate to the second derivative being calculated, with

304

% l(N



perhaps an additional third order difference. For example, using 2 we
0221

present in Figure 2 the value of H (x,y) at the point (x,y)=(ih+h/2,jh+h/2)£

inside the triangular piece shown in Figure 1 (on this triangular piece,

*221 is a cubic polynomial and the entries of H are linear).

T (Ih~h/2,Jh~h/2)
h (ihjh)*

Figure 1

-1 1
o----o

H (ih+h/2,Jh+h/2) 1 10 c
-2 1 i

h 0---1 10

I I -20
1 -1o

Figure 2

The entries in the matrix of Figure 2 are schematics for difference

operators where the symbol "0" identifies the multiplier of c1J and

multipliers of adjacent coefficients are shown beside the symbols "0".

Next, the idea is to compare, for the approximants q I D2S=u TH u with

D2f=uTH u, where u is a unit vector and H = x xY is the Hessian of
U £ xy y 2

f(x,y). If the difference is less than £ (the lower bound on D f), we canU

conclude that s is convex.h

We proceed to illustrate the comparison method. Again, we use as an

example the case 221 and we compare Hs (ih+h/2,Jh+h/2) at the upper corner

of the triangle In Figure 1 with H (ih,jh) in the case of

s h(x,y)=q f')(x,y). For this choice of sh we have c j=f i. Consider now the

(1,1) entry of H . We have

(9) H (ih+h/2,Jh+h/2) = o--0- o )c = ( o-- )fI

and the latter second difference may be written in integral form:

-- 1_ (i.1)hh

(10) ( ---- ')f t h L (h-It-ihl)f (tJh)dt
~ h2 11-1)h x
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Comparing this quantity with H 1 '(ihjh) f (ih, Jh), we obtain

H 1 .1) (ih+h/2,jh+h/2) - H (ihjh)

h I- <)h

IL (hItih)Lt-ihdt n
The inequality was obtained by applying the Lipschitz condition in (3)

satisfied by f=.

A similar technique is then used to estimate the analogous differences

at the other entries of the Hessian matrices H and H . We then obtain an

estimate of the form

(11) iDef(ihjh) - D'q (f)(ih+h/2,Jh+h/2)w s T[V U
tl uO 0L I 7i

where the entries of the matrix are proportional to hL and we showed above

that a=hL/3. If we denote by A the largest elgenvalue of the matrix, then

using the assumption D 2f(lh,Jh)t c, we have
U

Duqo(f)(ih+h/2,Jh+h/2) w c - A i 0 if A s c.

Since A has the form hL/c we can obtain an inequality of the form h s ce/L

as a sufficient condition for convexity of q0 in the triangle of Figure 1,

locally at the upper corner. Then similar estimates must be made for the

other two corners; these estimates are adequate as D is linear In the

triangle so positivity at the three corners implies positivity in the

interior.

The investigation of sufficient conditions for convexity of qk k > 0,

requires estimates of the size of powers of the finite difference operator M

(which is itself a sum of second difference operators) applied to the

Hessian matrix in Figure 2 with c j=f j. These estimates, which involve

fourth order differences, are rather complicated so we will not go into the

details here, although manipulation of integral representations such as (10)

and application of the Lipschitz condition is again the technique. In any

caze, inequalities of the form (11) can be obtained when sh=qk , where the

entries of the matrix are each proportional to hL, this in turn leading to a

sufficient conditon of the form h s c/L for convexity of q k'

The above technique was used to obtain sufficient conditions for

convexity of the qk for # 1111, 221' and *122 (see Table 1 in Section IV).
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Consider now a smoother spline obtained by adding vectors to the vector set

V of one of these three fundamental splines. By the result (8) it is

sufficient to examine the Hessian matrix of the appropriate fundamental

spline. Thus for instance, in examining convexity In the spline space based

on *222 (obtained by adding the vector • 3 to the vector set V of 022), a

sufficient condition for convexity is that uTH kuO, where the Hessian H

used is that In Figure 2. The coefficients c j however, are those

appropriate to the approximants based on *M through the finite difference

operator M.

IV. Results

We assume throughout this section that f(x,y) satisfies the hypotheses

(3). Table 1 below provides for the fundamental splines 0 111' 221' and

S122' sufficient conditions on h guaranteeing convexity of qk (f)(x,y).

Spline

k 221 0122 _ _ t_ ill

0 .909 c/L .480 c/L .727 c/L

1 .546 e/L .290 e/L .425 c/L

1 < k < w .172 c/L .097 c/L (1.50+.976k)-1ce/L

k = c .172 e/L ..097 c/L

Table 1

A value of h smaller than the tabulated figure guarantees convexity. Since

k=1 provides the quasi-interpolant for the splines considered above, the

next approximant of Interest is the Interpolant, k = w, for which an

estimate was computed in the cases of 21 , and # 122; however this estimate

also applies to intermediate values of k. Of course for 01til the

approximant for k=w does not apply.

The next tables give sufficient conditions for convexity for splines

obtained from the fundamental ones above by adding one or more of the

vectors e, e, e , e to V.

Three parameters related to a box spline 0 appear in the table. These

are:

a) r = E(i,J)(I +j2) 1

b) #supp(O) = number of points (1,J) at which 0(i,j)*o

c) a = 1 - min (m, n)exp(ipm+in) Iwhere i = V-, (p.,v) e R

For box splines with n3 =0 or n =0, a < 1 always holds. For the other
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cases, where n 3l and n 4l, a P 1 always holds. (We assume that n I1 and n 2I,:3 4,1 2

In all the cases under consideration.) For *11, as well as in several

other cases, a-i. Although it Is not proven that this is always true when all

four vectors appear In V we will only present estimates based on the

assumption a=i.

The Table 2 concerns box splines obtained from 0 with n4=0.

k n I2, n2a2, n3 l, n4=O

0 (1. O)-,1 c/L

l (1.i0+2r) -1 /L

2 (1.10+6r) "c/L

[ skS 1.10+ 6r+ 2a2(2-a) -1, 1 /

3 k s Br ~( i-a )2 r { u p ( ) ) /
Table 2

In cases where n=0 but Table 2 does not apply (i.e. the box spline

cannot be derived from 221) the bounds of Table 3, which apply to box

splines derived from 122' can be used.

k n,=l or n 2 =1, n3 2, n =0

0 (2.52)f'/L

I (2.52+4r)- I1 /L

2 (2.52+12r)- c/L

3 2 k 52+12r + 4a 2(2-a) rf#supp(O)}l / 2] c/L
(1-a )

2

Table 3

For box splines with four directions, i.e. box splines for which n al

and n zl, as stated above, we assume that a-i. If the box spline in question

can be derived from 0 22 we obtain the more favorable bounds on h summarized

in Table 4. The first three entries in Table 4 are the same as in Table 2

since these are derived without using the value of a but using only the fact

that Z(I, J)=l.
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I (1.10+2-) -1 c/L

2 (1. 10+6r) 1e/L

3 s k < 11(.10+ 6r +(k4.1)(k-2)F{*supp(*)}1/ c/L

Table 4

If the box spline cannot be derived from q22 I i.e. n,=1 or n 2=1, then,

using the Hessian of # *1 as a sufficient condition for convexity, we

obtain the bounds of Table 5.

k n1 =1 or n 2=1, n 3 1, n t1

0 (1.64) 'c/L

1 (1.64+3F-) 1 /L

2 (1.64+9r) 1c/L

3 Sk < 11.64+ 9r+2(k+l)(k-2)r{sp(} 1/2]

Table 5

This completes the summary of the results. Since the estimates in

Tables 2-5 are rather general, In specific cases a more careful analysis

using the techniques of [CDR2] may result in a sharper bound for

h.
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KNOT SELECTION FOR LEAST SQUARES
APPROXIMATION USING THIN PLATE SPLINES*

John R. McMahon* and Richard Franke+

Department of Mathematics
United States Military Academy
West Point, New York 10996

+ Department of Mathematics

Naval Postgraduate School
Monterey, California 93943

ABSTRACT. Given a large set of scattered data (xi,yi,fi), a
method for selecting a significantly smaller set of knot points
which will represent the larger set is described. The algorithm
for selection of the knot point locations is based on the
minimization of the sum of the squares of the difference between
the average number of points per Dirichlet tile and the actual
number of points in each tile, subject to the constraint that
each knot is located at the centroid of its tile. Using the
least squares Thin Plate Spline approximation method for
constructing surfaces, various test surfaces are examined and
compared to surfaces obtained using the smoothing spline and the
bicubic Hermite approximation methods.

I. INTRODUCTION. The problem of fitting a surface to small
sets of given data has been addressed in many different ways and
several programs are currently available which enable one to deal
with the problem effectively. The methods available involve
either interpolation or approximation; solving the interpolation
problem involves a system of equations with an equivalent number
of unknowns. For very large sets of data, the problem is
computationally intractable. This consideration provides the
motivation behind the development of a way to pare the problem
down to a more manageable size.

We wish to construct a function F which approximately fits
the data since we assume the data collection is subject to
measurement error. We propose to use approximation by least
squares Thin Plate Splines (TPS), where the surface function is
constructed so as to minimize an error function subject to
certain constraints. Solving the approximation problem will also
involve as many equations as there are data points, but the
number of unknowns will be significantly fewer. Part of the
appeal of TPS approximation lies in the fact that it minimizes a ,
certain linear functional, and involves a linear combination of
functions with no greater complexity than the natural logarithm
of the distance function.

* The work of the second author was supported in part by the
Office of Naval Research under Program Element 61153N, Project
NO. BR033-02-WH.
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Interpolation of scattered data by the method of TPS was
developed from engineering considerations by Harder and Desmai-
ris. [1] It can be thought of as a two dimensional
generalization of a cubic spline, which models a thin beam under
point loads subject to equilibrium constraints. The TPS function
is derived from a differential equation which gives the
deformation of an infinite, thin plate under the influence of a
point loads. A point load is applied at each data point so that
the interpolating surface can be constructed as a sum of
fundamental solutions of the TPS function.

A relationship between the basis functions which span a
certain higher dimensional function space and the data exists as
seen in the one dimensional analogue found in cubic spline
interpolation. The term knot refers to the places at which two
adjacent cubic polynomials are joined. The particular set of
basis functions in a cubic spline interpolation depend on the
knot points, as well as the data points. However, in
approximation, the data points and the knot points may not
necessarily coincide. Furthermore, the particular basis
functions found in approximation may easily depend on the knot
points, and the data points as well. In using the least squares
TPS approximation method to fit the surface, a fewer number of
basis functions than the number of given data points is employed.
These basis functions are centered at a different, smaller set of
points: the knots. Therefore, the problem at hand is one of
selecting the knot points, and hence the basis functions.

This approach differs from the use of smoothing splines,
which were introduced by Wahba and Wendelberger [3] in the
multidimensional case, and called Laplacian Smoothing Splines
(LSS). LSS minimize a certain functional which is a linear
combination of a term measuring fidelity to the data and one
measuring smoothness of the function (a generalization of the
usual thin plate spline functional). In this case, there is
still one basis function for each data point, but the
interpolation condition is relaxed.

Given a 'large' set of data points, (xi,yilfi), i = I,...,N,
we wish to find a smaller set of knot points, (x.,y.), j =
1,...,K, which will 'represent' the former reasonably eli. This
could be accomplished by choosing a subset of the original set,
or by some process which produces a representative set. The
ultimate goal is to approximate the surface from which the origi-
nal data arose using the representative set. Hence, a surface
fit to the large set and one fit to the representative set would
essentially be the same.

Approximation by least squares TPS is straightforward. We
construct the TPS function

F(x,y) = Ajd 2og(dj) + ax + by + c

j=l
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where d.2 = (x-x.) 2 + (y-y )2 and the coefficients Aj are
chosen to minimize 3the error function

E = ( ([F(xi,yi) - i /
i=l

The ordinates, fi, may be subject to random errors, say
with standard deviation, si, at the ith data point. We model the
plate under the point loads at the knot points (as opposed to the
data points); therefore the constraint equations for the TPS
method, which may be thought of as 'equilibrium conditions' on the
plate, should be satisfied. Thus, the error function is
minimized subject to the constraint equations:

K K K
AE = 0, AA = 0, Ajyj = 0.

j=l j=l j=l

Attempts have been made to minimize the error function by
considering it to be a function of the knot point locations as
well as the coefficients, wherein a total of 3K parameters are
involved. As reported on by Schmidt (2], the initial knot config-
uration was taken to be of tensor product form. The overall
minimization process is a large non-linear one, and is compli-
cated by possible coalescense of knots as well as non-unique
solutions (as indicated by consideration of one-dimensional
cases). Also, the objective function may have many local minima
so that avoiding poor local minima or searching for better local
minima may be necessary. Because of these kinds of problems, our
goal is to decouple the knot selection process from the least
squares process.

When data are somewhat uniformly distributed, methods invol-
ving tensor product cubic splines may be desirable. Tensor pro-
duct methods place knot locations on a grid, which does not
necessarily reflect the actual disposition of the data points;
in fact, there could be no data nearby. Even though these
problems are surmountable, they could lead to non-uniqueness of
solutions and a minimum norm solution that is not aesthetically
appealing.

A different point of view is considered here where the knot
point locations are predetermined based on two criteria. 4
Specifically, we shall make assumptios relating the density of
data to the dependent variable and mandating the importance of
each individual data point. Solution of the overdetermined
system of equations follows the knot point selection. A summary
of the approach and its results will be presented. Examples are
given which illustrate rather well the ability of the scheme to O
select knot locations which reflect the underlying density of the
data. Actual surface fitting and comparison with two other
methods, the Laplacian smoothing splines of Wahba and
Wendelberger [3], and the tensor product bicubic Hermite method
due to Foley [4], are also reported on.
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II. THE KNOT SELECTION PROCESS. Given 'a priori' flexibilty in
inot placement, the problem becomes the selection of knot
location, followed by solution of the system by least squares.
Since the selection of knot location is to be decoupled from the
solution of the least squares problem, some assumptions must be
made in order to develop an algorithm for the knot selection
process.

First, we assume that the independent variable data
reflects something about the behavior of the dependent variable.
For example, the density of the data points may be dependent on
the curvature of the surface. Hence, where relatively many data
points are found, the function is assumed to be changing behavior
rapidly, whereas a low density of data indicates slowly changing
behavior. Although this assumption is not universally satisfied
in practice, it does not seem unreasonable one.

The second assumption is that each data point is equally
important in defining the underlying surface. Therefore the
number of data points represented by each knot should be the same
or nearly the same. This leads to 'equal representation' of the
data points by the knot points where each data point is 'close'
to a knot point. A key advantage is achieved in pursuing this
approach in the form of a natural heuristic for moving the knots
around the plane in searching for the optimal knot configuration.
This point will be elaborated on later in the paper.

Our knot selection algorithm is based on these last two
assumptions. First, we wish to minimize the sum of the distances
squared from each data point to the nearest knot point; that is,
minimize the 'global' value,

N

GN2  = N MIN [(xi-xj) 2 + (yi-Yj) 2 ]
i~l j 3- J

This is global in the sense that it accounts for the contribu-
tions from all of the K tiles. The expression leads naturally
to a 'default' Dirichlet Tesselation, a partitioning of the plane
with respect to the knot points (Figure 1.1). Thus, each data
point belongs to some knot point according to the Dirichlet tile
in which it lies. Data points on any of the tile boundaries
(ties) must be resolved by a determination of which tile they
belong to or some sharing mechanism.

Differentiation of GN2 with respect to x* and Y* show that
at the minimum, each knot point will occupy the centoid of its
tile with respect to the data points inside that tile. Given
some initial configuration of knot points with its default
Dirichlet Tesselation (our initial guess for the initial
configuration was taken to be quasi-griddyd), the following
algorithm for iteration to a local minimum GN value is employed:
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Figure 1.1 A Dirichlet Tesselation with 5 Tiles. It is
constructed by connecting the perpendicular bisectors to the lines
joining each of the knot points.

(a) compute the centroid of each tile with respect to the
data points contained within each tile;

(b) move the knots to the corresponding centroids, which
results in a new Dirichlet Tesselation and a new set of knot
point - data point associations; this is the configuration for
the next iteration.

(c) quit when two successive iterations yield the same knot
locations, which means that a minimum global value of GN2 has been
found.

This algorithm was formulated in discussions at the Istituto per
le Applicazioni della Matematica e dell'Informaica in 1983 [5],
after the problem was posed by G. Nielson and R. Franke.

We note that the value of GN2 will necessarily decrease as
the iterations continue, until two successive iterations yield
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the same configuration; this will be proven below. In the case
where no data points lie in a tile for some knot point, the knot
point is moved to the nearest data point. This mechanism avoids
knots without data points. Futhermore, if a data point lies on a
tile boundary, it is assigned to the knot with the smallest
subscript (amongst the appropriate choices of knot points).
Employment of a different criterion for the resolution of ties
will yield different results. We note that knots cannot coalesce.

The following theorem2 is pertinent to this algorithm.
THEOREM: The function GN decreases with each iteration which
involves movement of a knot point.
PROOF [5): Write GN2  in the more convenient form

GN 2  = E [(xi-xj)2 + (Yi-Yj)2()
j=1 iEI.J

where I (i: (xiyi) belongs to (x.,y.)} . In (1),the
interior sum is the sum of the distances from 2he data points in
a tile to the knot point in that tile, and the exterior sum is
over all K of the tiles. Let a prime denote the new knot points
and index sets. This form leads to the expressions,

(x'j,y'j) = ( xi/pj, yi/Pj),
iEIj i I*

where P. is the number of indices in each set I The set th
IA contains the indices for the data points in the gile for the j
k ot point. The new knot points will lead to a new tesselation,
followed by the new index sets Ij'. Then the expression (1) is
greater than or equal to

K
K [(xi-x' )2 + (yi-Y'j)(2 (2)

j=l iEIj

because the new knot point locations minimize the contribution of
the interior sums. This expression (2), in turn, is greater than
or equal to

K 22
E [(xi-x' j) + (yi-y'j)2] (3)

j=l iEI'j

since an index i moves to another set only in the case wherein
the corresponding data point is now closer to a different knot
point, thus decreasing its contribution to the global GN2 value.

Finding a local minimum of GN2 is well-served by this algo-
rithm; howev r, as seen next in a one dimensional example, the
function GNY is rife with local minima, and the local minimum
value found depends on the initial configuration of knots used.
We can draw similar conclusions for the multi-dimensional case
based on the one dimensional analogy.
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KNOT FIXED AT 0.5
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Figure 1.2 One Dimensional Cross-section of GN2  The dependent
variable in each of the graphs is the value o f the GN2  function
as a function of the one variable knot point; the other knot
point in each figure is fixed.

The function GN2 is the sum of N continuous, piecewise
quadratic functions, gi(xg,yj), i = 1,...,N, selected from a
larger set of N x K functions gixl..xki -= 1,...,N,
such that ,*6

gilxj,yj) = MIN (dij) 2 = MIN [(xi-xj) 2 + (yi-yj) 2]

4 4

Thus, GN 2 is a function of 2K independent variables, which are the '

knot point coordinates (Xlyl4 ...... 4XkYk);  each data point

(xi,Yi), i = 1,...,N, is fixed-.

Suppose we wish to re resent a set of five data points
-1,-0.5, 0, 0.33, 2and 2 F. with a set of two knot points,

ION.
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KNOT FIXED AT -0.75

: /

.Figur. 1.3 One .......

................ ........... ....... ...... .......... ... .......

Z .-.. . . . ... . . .' . . .

scales of each of the Figures 1.2 through 1.5 vary so as, to
accomodate the ranges of the piecewise quadratic function, GN

GN2 =MIN [(xl+l)2 ,(x2+l)
2 ] + MIN [(xl+0.5) 2,(x 2 +0.5)

2 + MIN

[x1 2,22] + MIN [ (xi-0.33)2 , (x2-0.33)
2 ] + MIN ......

where xI and x2 are the as yet unspecified locations of the
knots, the variables on which the optimization will occur. The
one dimensional GN function is piecewise quadratic, consisting
of the continuous component quadratic functions gi(xj,yj).

Now we fix one of the knot points at some reasonable

location. Figures 1.2 t1rough 1.5 depict a series of cross-I
sectional views of the GN function where one of the knot

behavior of the GN2 function as the varilable knot location
changes. The minimization occurs in two distinct steps: first,
each data point is assigned to the closest knot, and second, the
centroid of each tile is computed based on the data points which
have been assigned to each of them. 1
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KNOT FIXED AT -0.5
0

.. ... ...' .... ..

A 0

-o -5-o'. o o 3. . .

Figure 1.4 One Dimensional Cross-section of GN2 . In each of the I

Fi.gures 1.2 through 1.5, the data points are fixed at the
locations -1, -0.5, 0, 0.33, and 2.

The places at which the tile boundaries move across a data
point are seen as corners or the intersections of two adjacent
pieces of the composite quadratic f..nction. As a direct result

of the centroid requirement, the GN function will stabilize at
that local minimum value corresponding to the particular piece
of the quadratic in which the variable knot is placed. The local

~minimum value will frequently occur out of the domain of the
~corresponding quadratic piece so that stabilization of the varia-
i ble knot point will occur when the local minimum value is found
~within the domain of the appropriate quadratic piece.

This phenomenon is referred to as 'cascading' to a local

minimum value. In spite @fthe cascading phenomenon, the minimumU
i global value of the GN function will not necessarily be at-

tained, since the cascading stops as soon as the local minimum
value is found to be within the domain of the quadratic. A localI maximum value occurs when the two knot points coincide, leading

to an apparent coalescing of knots. However, such coalescing is
avoided in the algorithm by movement of the knot point to the
nearest data point whenever a tile is left empty.
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KNOT FIXED AT 2.0
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Figure 1.5 One Dimensional Cross-section of GN2 . Observe the
phenomenon called cascading where t~e variable knot point seeks :
that location which minimizes the GN function value, subject to
it being within the domain of the quadratic.

Tables I and II summarize two possible knot movement
scenarios given the same initial guess for the knot point loca-%
tions. The scenarios differ in that the first one employs the
specific criterion for breaking ties wherein the data point is
assigned to the knot with the smallest subscript. The other
scenario employs an alternative tie-breaking scheme. For a fixed
set of data points, the initial guess, which can be generated by
the program or provided by the user, leads directly to the
assignment of the data to the closest knot point. This is
followed by the determination of the new knot location via the

centroid criterion. The process continues until stabilization

these tables yield valuable insight into how the one dimensional
cas woksand lend themselves to understanding themultidimension.case.,
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TABLE I

KNOT POINT DATA POINT KNOT POINT DATA POINT SEE
ITERATION X1  ASSIGNMENT X2  ASSIGNMENT FIG.

0 (Initial

Guess) -0.75 (-i,-0.5) 0.5 (0,0.33,2) 1.2

1 (New Knot) -0.75 {-l,-0.5,0) 0.78 (0.33,2) 1.3

2 (New Knot) -0.5 (-l,-0.5,0) 1.167 (0.33,2) 1.4

3 (New Knot) -0.5 {-l,-0.5,0) 1.167 (0.33,2) 1.4

STABILIZATION

Table I. Trial one employs the tie breaking criterion described
earlier where the data point is assigned to the knot point with
the smallest subscript. Both tables are read in zig-zag fashion
following the flow of each iteration separately, but in tandem
with the other knot point assignments.

TABLE II

KNOT POINT DATA POINT KNOT POINT DATA POINT SEE
ITERATION Xi ASSIGNMENT X2  ASSIGNMENT FIG.

0 (Initial
Guess) -0.75 (-l,-0.5} 0.5 (0,0.33,2} 1.2

1 (New Knot) -0.75 (-l,-0.5,o) 0.78 (0.33,2) 1.3

2 (New Knot) -0.5 (-i,-0.5,o) 1.167 (0.33,2) 1.4

3 (New Knot) -0.5 [-l,-0.5,0,0.33) 1.167 (2) 1.4

4 (New Knot) -0.292 {-l,-0.5,0,0.33) 2.0 (2) 1.5

5 (New Knot) -0.292 {-l,-0.5,0,0.33) 2.0 (2) 1.5

S T A B I L I Z A T IO N

Table II. In trial two, the tie is resolved differently, so that
an alternative data point assignment is made at iteration 3. Hence,
the final outcome is significantly different. Note how each
iteration is referenced to one of the Figures 1.2 through 1.5.
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. .OR-, AM"TWO

The algorithm for finding the minimum local value of GN
2

performs inconsistently as seen in the cascading phenomenon
wherein the GN function may have several local minimum values.
We are lead to consideration of a somewhat different criterion
for locating the best configuration of knot points. We wish to
exploit the second assumption specified earlier, while still
taking advantage of the minimization of the GN function.

Since each data point is assumed to be equally important,
the Dirichlet tile for each knot should contain about the same
number of data points. Thus, we wish to minimize the sum of the
squares of the differences between the number of knots in each
tile and the average number that should belong to each tile;
that is, minimize the quantity

K
D = (Nj - N/K)2

j=l

where N. is the number of data points in the jth tile. The new
algorithm for determining knot locations is based on the minimi-
zation of D, subject to the constraint that each knot be located
at the centroid of its tile.

This new optimization leads to a natural heuristic for
moving knots from a stable configuration to a possibly better
configuration. We call the current configuration of knots a base
configuration, and iterate through the algorithm as follows:

(a) generate a new guess for the knot locations by moving the
knot(s) with the smallest number of data points in their tiles
toward the knot(s) with the largest number of knot(s) in their
tile; the distance moved is initally a large fraction of the
total distance between the knots.

(b) iterate to a stable configuration using the first
algorithm, compute the values of GNZ and D, and compare D to the
smallest value achieved to date, as represented by that of the
base configuration;

(c) repeat the process above when a smaller value of GN is ob-
tained with the present configurat on as the base configuration;

(d) when a smaller value of GN is not found, take a shorter
step in the movement of the knot(s) and repeat the process above;

(e) continue with smaller and smaller steps until a smalle
value of D is found (or an equal value of D with a smaller GN
value) until the knot locations return to the base configuration;

*i (f) perform the search in the symmetrical way when the base
configuration is returned to; that is, move the knot(s) with the
largest number of data points in their tile(s) toward the knot(s)
with the smallest number of knots in their tile(s);

(g) quit when no smaller value of D is found.

The movement of the knots is justified by the rationale that
a more equitable distribution of data points can be found by
moving the tile boundaries across dta points. Note that the
first algorithm for computing the GN function value is embedded
in this new algorithm.
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Once the knot point locations have been determined, the
least squares problem is solved using the public domain software,
LINPACK (61. We call the N+3 x K+3 matrix of equations A, the
K+3 x 1 column matrix of unknown coefficients x, and the
N+3 x 1 column matrix of dependent variables b, so that the least
squares problem can be posed as solution of the system Ax=b. The
LINPACK subroutines employ a QR decomposition of Wtrix A, whih
can then be written as QRx=b. Multiplication by Q1yields Rx=Q b
since Q Q=I. R is a rectangular matrix with dimensions
N+3 x K+3, which is zero below its npin diagonal, so
that ml iplication by the block matrix RII- yields the result
x=Rll Q b. Thus, the cqnputation of x requires only the matrix-
vector multiplication Q, followed by back substitution in the
triangular system RIlx=Qb. Using a Householder algorithm for
the QR decomposition, numerical stability is guaranteed.
Finally, with the known coefficients in hand, a grid of surface
values can be computed, which can be subsequently used by a user
provided plotting routine to generate a plot of the surface.

III. RESULTS AND EXAMPLES. Using the least squares algorithm
for the a priori selection of the knot point locations,
experiments were conducted to test the scheme using different
sets of test data. This was followed by verification of the
scheme on a large set of real data. Results from two sets of
the test data are presented here: one consisting of 200 data
points called 'Cliff', and one consisting of 500 data points
called 'Humps and Dips'. Both sets of data were generated using
known functions (see Franke(7]) in a way that forced the
disposition of points to be proportional to the curvature of the
sampled function. Figures 1.6 through 1.11 portray the test data
sets graphically, and illustrate the optimized knot point
configurations found using the least squares algorithm. Figure
1.11 is particularly encouraging, since it depicts actual
hydrographic data collected in Monterey Bay. We note that the
assumption regarding the density of the data being indicative of
the behavior of the dependent variable is not actually satisfied
in this case due to the source of the data. Nonetheless, these
results demonstrate the ability of the algorithm to produce .
representative sets of knots.

We also investigated how closely the constructed surface F
and the 'true' surface resemble one another. This comparison is
made in the context of the root-mean-squared error (RMS) of both
the residuals (at the data points) and on a rectangular grid of
locations in the plane. Tables III and IV provide a comparison
of the RMS error for the test data sets using the least squares
algorithm developed here, the method of Wahba and Wendelberger
[3), and the method of Foley 14). The dependent variables of
the experimental data sets were generated in two ways: 1) using
a known function, and 2) contaminating it by the injection of
independent, normally distributed random errors with a composite
standard deviation of less than 0.05. The actual standard
deviation was about 0.0485.
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Figures 1.6 and 1.7. The 'Cliff' data set. Note the relatively
dense disposition of data points across the diagonal where the
underlying surface drops off. The 25 knot points used clearly
reflect the behavior of the data set, as expected.

324



C3

0 -

0 0

a C C

CC

0 0 0. O0 0  .7 090

0 0 0 0
0.9- o ° O 0 0

0 0

0.7- 0 S'; o (Zo0
0 0 

0  
0

0~~~ 0 00 __________________________

0 0 0 .0 0 0 7 0 0 .1

0.6- o: 0o o o o o o o
0 0 0 0 0 0 r
0 0 0 0000

0.9 0 0 0
0 0 0 OC o 3 0 0

80c"7O - - a00 1

OW. a 0. 0 0.3 Q 4 0 . . 0 . 0 0 .'

0.4- 0 0 8 ,0' 0
S 0 @ C 0000000

0 0 0
0. 000 A ~~ a 00~

>- 05O 00 0 0 9 00 5
0 0 0 o 0

0 0 0 0 2

S--00
0 00 - 0 0 0

0. 0 . 0 0. O 0 0. .7 08 0.

Figures 1.8 and 1.9 The 'Humps and Dips, data set. Note how,,
clumps of data appear in three portions of the plane, indicating '
that the underlying surface is undergoing change. A set of 50 . +knot points was used to represent the data.

'r~ 
0* 

y W-' -V 0 --- )- P -& Il

-0.~~~~~~0-01~~~~ 0 1 0k.e.s 05 06 07 . . .



0 a a
0 a a

0 0 n
0 0 0

a • o o..

0 a . -

00 0 , m~

0

00o 0

0 o a 0

0 L
0 0a oa

-,3. [3 , O o

e0, 00 -P

0 * a

0 E- 0

00.
0 a. WaGac

0 0 0< a ai a

0 0a0 o a a ,%o aa 0

S'o o0 0 a aao a

0 j ow . . . .
0 a0

S 0 o a. .

000 *oo a+ o o,0 0

0, a a aa
0%

o 0 00 . -.. v a

o1" 
o 0

-P _ .+ ; ,% am - 0 .% " -0 0 &o "0'0a. 0

RA d364' 0 a

0- C9 • o a 000

0 . 0
0 0 + # # oo do 0

00 0 00 ,,,,,A,• C , a a0 a o.

0 
0. 0 .

9. ... O o. o .o 0+'

0 0 0 0 O' a -PO. 00

4 o a. 0
%. a

go' 0" ' o 0 " W - oo .LI 0

0iue .0 an yrgrpi Daa ro Montery Bay 0a.

C- F-0 o ao 0 0 ,o'-
Li 0 %0 .o, 000 %0 L

V0 00 0oa o.D o 0 0

0.. a .o.

00 .0 i.* 0 0 000 6 = 0

'0 0 0
0 00 00 0'

0 0 . 0 -

0I P_______1____0___0_____

S0 O 1- ZO Z-0 P0 00D t0- S . 0~ 00 D

Figures 1.10 and 1.11 Hydrographic Data from Monterey Bay, Ca.
Here, 1669 data points (soundings) are represented by 100 knot
points. The results are very reasonable.
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TABLE III

COMPARISON OF RMS ERRORS ON 'CLIFF' 200 POINTS

METHOD NUMBER OF NO ERRORS CONTAMINATED DATA
DATA POINTS/ IN DATA
KNOT POINTS

RESIDUAL GRID RESIDUAL GRID

LSTPS 200/20 .01562 .01474 .05214 .01795

LSTPS 200/25 .01179 .01154 .04805 .02040

FOLEY 200/5X5 .00777 .00613 .05996 .04819

LSTPS 200/35 .00626 .00616 .04590 .02146

FOLEY 200/6X6 .00512 .00417 .05113 .03745

SMOOTHING 200 0.0 .00096 .04272 .01806

TABLE IV

COMPARISON OF RMS ERRORS ON 'HUMPS & DIPS' 500 POINTS

METHOD NUMBER OF NO ERRORS CONTAMINATED DATA
DATA POINTS/ IN DATA

RESIDUAL GRID RESIDUAL GRID

LSTPS 500/20 .02402 .02517 .05256 .02738

LSTPS 500/25 .01664 .01766 .04818 .02283

FOLEY 500/5X5 .01346 .01230 .05844 .03767 'S"

LSTPS 500/50 .00645 .00845 .04544 .01961

FOLEY 500/7X7 .00645 .00552 .05696 .04864

Tables III and IV. Comparison of RMS errors in two sets of data,
each with an exact and a contaminated version, using three
methods for surface construction. p
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In the first case, we would expect to see an overall
decrease in the RMS error on both the residuals and the grid as
the number of knot points used to represent the data is
increased. In the contaminated case, the dependent variable at
each data point is the sum of the unknown underlying function
value and the error function value so that the difference between
the constructed surface and the 'true' surface is entirely
attributable to the presence of error in the data. Thus, we
expect the RMS error in the residuals to match the composite
standard deviation of the random error injected into the
contaminated data. At the grid points, we expect the RMS error
to be smaller than the composite standard deviation, since the
grid sample is larger (33x33) and the errors are distributed more
evenly throughout the entire region of interest. In the case
where no error is present, we expect that the difference between
the constructed surface and the 'true' surface is entirely due to
'slack' in the constructed surface. We anticipate that the RMS
error in the residuals would be approximately equal to the RMS
error on the grid, thereby giving evidence that the error in the
constructed surface is uniformly distributed over the entire
region of interest.

Some observations can be made regarding Tables III and IV.
The general trend of the RMS error on both the residuals and the
grid is to decrease as the number of knot points is increased.
As expected with the exact data, the RMS error of the residuals
and the RMS error on the grid are roughly equivalent. For the
contaminated data, the RMS error of the residuals roughly matches
the composite standard deviation of the data, and the RMS error
on the grid is smaller than the RMS error of the residuals, as
expected. The discrepancy between the RMS error on the grid and
the RMS error in the residuals cannot be totally attributed to
the injected error; it is the result of 'undersmoothing', where
the constructed surface tends to fit the error rather than the
data.

In comparing the least squares to the smoothing spline
method in the exact data case, we note that the smoothing spline
method yields a residual RMS error of 0. This could be expected,
since there is no error in the data and the spline of
interpolation is chosen. On the grid, the RMS error is small
since some amount of error on the grid is expected. When the
data not contaminated, the RMS error of the least squares algo-
rithm begin to approach those of the smoothing splines method
only as the number of knots used becomes large. We also note
that in the 500 data point set (Humps and Dips), no comparison is
made since a potential limit for computing smoothing splines is
200-300 data points.

In comparing Foley's method to the least squares method for
the contaminated case, the RMS error on the residuals is nearly
equal to the composite standard deviation injected into the data.
However, on the grid, the least squares method does better, an
indication that smoothing is occurring, as expected. We also
note that an increase in the number of grid points does not
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significantly improve the RMS error in Foley's method, even
though an increase in the number of knots in the least squares
method usually yields improved results. We used the default
local approximations in Foley's method, and we note that
performance of the method may be improved through the use of
lower degree local approximations to estimate the grid values to
be used.

Finally, we note that the search for a best knot configura-
tion can turn out to be rather expensive. For a large number of
data points with a moderately large number of knot points, the
computational effort could be excessive, althogh we are
investigating ways of speeding up the algorithm. Furthermore, as
we noted earlier, the end results are dependent on the initial
guess, although they generally look quite good for any reasonable
initial guess.
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A Rapid, Backscatter Simulation Technique
for Complex B-Spline Target Models

Karl D. Reinig
Advanced Electronics Systems Laboratory

Sensors and Signal Processing Technology Division

Harry Diamond Laboratories, U.S. Army LABCOM
2800 Powder Mill Rd, Adelphi, MD 20783

ABSTRACT. This paper describes a method for rapidly evaluating the
simulated radar backscatter signatures of B-spline target models moving
relative to a source/receiver. A geometric optics approach is used to esti-
mate the radar return from a complex target surface described by a bi-cubic
B-spline mesh. The method exploits the second-order continuity of bi-cubic
B-spline surfaces to reduce the problem of finding all the specular points
associated with each new trajectory position to that of tracking the motion
of existing points. In particular, it is shown that the locations of the an-
nihilations and creations of specular paths may be predicted for an entire
trajectory, eliminating the need to search the whole surface for specular
points as the target moves relative to the source/receiver. The method is XS
shown to work for the multiple-bounce case as well.

1 Introduction

Consider the scenario depicted in figure 1. A source/receiver (S/R) moving
along some trajectory illuminates a target of interest. It is desired to esti-
mate the return from the target as the S/R moves along the trajectory. No-
tice that whether figure 1 describes a target detection/identification prob-
lem or the terminal phase of a guided munition is mostly determined by
the trajectory being considered. A backscatter simulation technique which
places few or no restrictions on the paths of the trajectories to be simulated
would therefore find use in all phases of seeker munitions studies. In addi-
tion, of course, the relative motion between the S/R and the target could
be due strictly to the motion of the target. Thus the scenario also includes
the return from passing targets. p
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Figure 1: Target Encounter Scenario 

This paper discusses the use of a geometric optics approach to simulate 
the radar return from complex but generally smooth targets. The overall 
simulation method can be broken into two basic parts. First, the surface of 
a target is described using bi-variate piecewise polynomial functions such as 
bi-cubic tensor product B-spline surfaces. Second, for each location along 
any desired trajectory, the positions on the surface (the specular points) 
from which a ray leaving the source would be reflected back to the receiver 
are found along with their local principal radii of curvature. The locations 
of the specular points are used along with their local radii of curvature 
to calculate the discrete radar cross sections. The overall return from the 
complex target is then found by coherently summing the expected discrete 
return from each specular point. 

Previous studies have demonstrated the usefulness of the geometric op- 
tics approach for computing the expected return from a composite of simple 
analytic shapes |l]. However, as the targets of interest become more com- 
plex or the desire to match their surfaces more accurately increases, the 
use of simple analytical shapes to describe the target surface often becomes 
impractical.   Three-dimensional faceted models exist for most targets of 
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interest, including tanks, helicopters, and jet aircraft. These faceted mod-
els generally use several thousand facets to describe the target surface and
contain a great deal of detail. Unfortunately, the faceted models do not di-
rectly give useful geometric optics information. For example, both principal
radii of curvature of a faceted model are unbounded everywhere except at
facet edges where they are undefined. This paper focuses on a technique
which exploits the second-order continuity of bi-cubic B-spline surfaces to
reduce the problem of finding all the specular points associated with each
new trajectory position to that of tracking the motion of existing points.
For a complex target, the reduction in the problem results in multiple or-
ders of magnitude in savings. In addition, it is shown that the technique
can be easily extended to the multiple-bounce case, with the potential for
even greater savings.

'2 Single-Bounce Return Problem

The geometry of the specular return problem from a single patch of an
arbitrary B-spline surface is shown in figure 2. R((A) is the current position

,'.

R, (u, v) R A

X

F r 2

Figure 2: Specular Return Geometry
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of the projectile along a linear trajectory. R,(u, v) describes the target
surface as a function of the two parameters u and v. And G(u,v,A) is
the difference between the two vectors Rt(A) and R,(u,v). It will be
assumed throughout this paper that the projectile has an unobstructed
view of the surface being considered; i.e., the problem of shadowing will
not be addressed- here. A necessary and sufficient condition for a point on
the surface to be a specular point relative to the position Rt(A) is that the
12 norm of G(u, v, A) be either a local maximum or minimum with respect
to the two target surface parameters u and v. Finding all the specular
points of a given surface (for a given trajectory position) is therefore the
same as finding all u and v which satisfy the two nonlinear equations

, IG(u, V, A)1 2

and

F2(u, v,A) - G(uvA) -0. (2)

If G(u, v) is given by a tensor product of cubic B-splines on a uniform
grid, both F1(u,v) and F2(u,v) may be written explicitly in terms of u
and v. In general though, solving for the u and v (call them u* and v*)
which satisfy equations (1) and (2) requires a numerical technique. Simple
application of Newton's method for nonlinear equations will find solutions
to (1) and (2) provided the search is begun "close enough" to (u*,v*). The
question of how close is close enough is a complex one, which ultimately
depends on the variation of the surface being considered.

3 Twinkles

Suppose the coordinates of a specular point are known for a particular
value of A and we wish to observe the motion of the specular point as A
changes. The following argument is a trivial extension of that given by
Longuet-Higgins for the case of a time-varying analytic surface [2]. Taking
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the differential of equations (1) and (2) with respect to u, v, and A yields

____ u 1i
a211G112 82 g 2  du i 2flG112aU2 ava ;-E auaA (3)

~jj.~j2 211G112 iidv -
2 GH I(3

akuv aV2  dA JVaA

Denote the two-by-two matrix of equation (3) as J(u, v, A). Assuming the
elements J(u, v, A) are continuous functions of u, v, and A, if the matrix
is nonsingular, du/dA and dv/dA will both be finite, which implies that
the changes in u and v can be kept as small as desired by choosing the
change in A small enough. Longuet-Higgins [2] refers to the vanishing of
the determinant of J(u, v, A) as a twinkle. The physical significance of this
result is that as the S/R moves across a second-order continuous surface,
specular points cannot suddenly appear or disappear unless 3(u,v,A) is
locally singular. The observation that specular points move in continuous
paths broken only when J (u, v, A) is singular leads directly to the following
conclusion. If for any given trajectory, it were possible to determine all
the points (u,v,A) for which , (u,v, A) is singular, it would no longer
be necessary to search the entire surface for specular points at different
positions along the trajectory. It would only be necessary to find all the
specular points corresponding to one trajectory position (R for example)
and then track their motion, picking up or losing specular paths only at
twinkles.

4 Finding Twinkles

Let

F,=

a, (;!F2 =

and
a2f~l 2G 2

_(2 11Cl 2
F3  au2  av2  auv
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Then the Newton step toward the parametric coordinates of a twinkle must
satisfy

au~ cv 8A S F

5_F ZIF 5__F

Thus, local search techniques exist for finding all potential locations on
the target surface, as a function of the trajectory position, for which the
specular paths are discontinuous.

5 Specular Paths Near a Twinkle

By themselves, the conditions for a twinkle do not tell whether a particular
twinkle represents a birth or death of a pair of specular points with respect
to a chosen trajectory direction (e.g., time). Once again, a straightforward
extension of the analysis by Longuet-Higgins 12] gives a method for de-
scribing the motion of specular paths near a twinkle, including whether the
twinkle represents the birth or death of a pair of paths. Define

= a i+j*k 1(;(u, v, A)11 2  (4)auiav 9Ak L==

where the coordinate system is chosen such that u = v = A = 0 at the
twinkle and

aooo = aioo = aoo = alo = a2=00 . (5)

It can be easily seen from Longuet-Higgins analysis that near a twinkle the
u, v coordinates of a specular point are given by

2a101A 11/2

a a300a0210(a101 - a300 aoll (6)

a300a 020

Equations (6) show that if a1oi/a 300 is positive, then two solutions exist
when A is less than zero, and no solutions exist when A is greater than
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zero; i.e., an annihilation of a pair of specular paths occurs. Similarly, the N
creation of a pair of specular paths occurs when aioi/asoo is negative. It
remains to determine a transformation of coordinates for which equations
(6) hold. Simply choosing the origin of the new coordinate system to be
the location of the twinkle ensures that a000 is equal to zero. It is useful to
consider the surface formed by letting the function IG(u,v,A) 112 be the w
coordinate in an orthogonal u, v, w coordinate frame as shown in figure 3.

JIIGUui, 2i
1j-,(uu j~v, 112

U1

U V1

Figure 3: Distance Surface

For lack of a better term, this surface will be referred to as the "distance
surface." The condition for a twinkle may then be interpreted physically
as the vanishing of the Gaussian curvature of the distance surface. Or
alternately stated, at a twinkle, one of the two principal radii of curvature
of the distance surface is equal to zero. The curvature of any smooth
surface, at a given point, in the direction 6u, 6v may be written as (see,
among others, Faux and Pratt [31)

a2 = ()t-o (bu)(bv)a o + ( )0o 0 . (7) f

Now suppose a rotation of coordinates is made such that the u coordinate
is aligned with the principal radii of curvature having zero value (that such p
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a direction exists is ensured at a twinkle). Then with 6v = zero, equation
(7) yields

0 = (bu)2 a200,

which implies that a20o = zero. It can be seen that the twinkle condition
implies

2a~ooao2o - alo = 0.

Therefore, in the rotated coordinate system, allo must also be equal to zero
and equations (5) are satisfied. Define the new coordinates u', v', and A'
by

u = u'cosO-v'sin0+u ut.

V = u'sin0+v'cos0+v ,1
A =A t.,

where ut, vt, and A, are the original coordinates of the twinkle. Then
if 8 is the angle which rotates the original u axis into the direction of zero
curvature, the signs of alr, and a3o, in the new coordinates, will tell if
the twinkle represents a birth or a death. In addition, the motion of the
specular points in the vicinity of the twinkle (in the new coordinates) will
be given by equations (6).

6 Single-Bounce Example

Figures 4 and 5 show an example of the use of twinkles for tracking single-
bounce specular paths on a B-spline surface. Figure 4 shows the B-spline
surface control mesh and desired trajectory, as well as the locations along
the trajectory where specular path discontinuities are expected (based on a
search for twinkles). Each twinkle location along the trajectory is labeled
B or D depending on whether the twinkle represents the birth or death
of a pair of specular paths, and lines have been drawn connecting them
with their associated locations on the target surface. In addition, the pre-
dicted paths of the specular points in the area near each twinkle are shown.
Figure 5 shows the results after tracking the the specular paths for 1000 %
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locations along the trajectory. A comparison of figures 4 and 5 shows that
the specular paths did in fact remain continuous everywhere except at the
twinkles and moved as predicted in the regions near each twinkle. Because
completely searching the entire target for specular points at each trajec-
tory location was unnecessary, the entire simulation took only a couple of
minutes. Even if the global search for specular points could be reduced to
10 seconds per trajectory location, the simulation would have taken over
2-1/2 hours without the use of twinkles.

7 Nth-Order Specular Points

Often multiple-bounce return, as depicted in figure 6, produces a significant
contribution to the overall target backscatter. A weak form of Fermat's
principle of optics guarantees that any multiple-bounce return path will
be stationary with respect to the 2n surface parameters of the bounce. In
terms of the distances between bounces, this becomes

aE4I d,=0 a , d
a9uj avj

for all j = 1,..., n. Noting that

ad, ad,

whenever i - 1 _ j or j > i + 2, we get the 2n conditions F

a(d, + d,+,) a(d, + d,+,)
au, -0 avi

Denote d, + d,,, by G,. Then, taking the differential of the previous 2n
equations with respect to the 2n surface parameters (u,,v, i = 1, n) and
the trajectory parameter A yields

87 C 2G0, 82G, 8c0 du PC
aU 8u1 8v1  * Cluj8, au" ao,, ts

Gd 820,, 82G20 G2 dL9G1,
aurar, .. ""utIVu 8v Id3v,, dA av,aa

(8)

8u 1 8v (9G dv.V,8
auav, arra. 'c" aa, a3 d a,.,a0L V,?
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Source/Receiver

Figure 6: Multiple-Bounce Return

The same argument which led to the conclusion that single-bounce spec-
ular paths can only be created or annihilated at twinkles may be directly
extended to include multiple-bounce twinkles; i.e., the vanishing of the
determinant of the 2n x 2n Jacobian of equation (8) is required for a dis-
continuous motion of the nth-order specular paths.

8 Double-Bounce Example

Figures 7 and 8 show an example of the use of double-bounce twinkles
for tracking double-bounce specular points on a simple B-spline surface.
Figure 7 shows a control mesh for a simple crescent-shaped ribbon which
has been tilted slightly so it may be viewed. A short trajectory is shown
along with the only double-bounce twinkle associated with that trajectory
and surface. In addition, a triangle has been drawn to show the double-
bounce path associated with the twinkle. Figure 8 shows the results of
searching the surface for double-bounce specular points at 40 locations
along the trajectory. As expected, the number of double-bounce specular

I.. points associated with each trajectory location before the twinkle did not I
change (there were none). At the twinkle, two sets of specular paths were
created (pairs of specular bounces associated with the same double-bounce

path are shown connected by a line). The two sets of double-bounce paths
moved in generally opposing directions from their origin.

ii
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Figure 7: Double-Bounce Twinkle
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9 Conclusion and Near-Term Efforts

The use of twinkles to reduce the problem of finding specular points for
many locations along a trajectory to that of tracking their motion can
greatly reduce the computation time required to find the geometric optics
return from a complex surface. Two fundamental problems are left to be
solved before the method can be used widely. The first is the current
lack of B-spline models which describe targets of interest. While spline
modeling of complex targets is not expected to be easy, software packages
such as the one developed by the Alpha-l group at the University of Utah
offer user-friendly tools which should allow for the practical development of
detailed target models. It is expected that the creation of rapid and robust
algorithms for the simulation of radar backscatter from complex B-spline
surfaces will result in a significant demand for the development of a library
of B-spline target models of interest.

The second basic problem is the local gradient search technique cur-
rently used to find twinkles and initial specular points. The algorithms
used to demonstrate the method simply start searching for twinkles in the
middle of each patch and the middle of the trajectory. The algorithms can
find only one twinkle on a single spline patch (there may be more) and
are not even assured of finding a twinkle when one exists. These problems
are typical of local gradient search techniques when no additional infor-
mation is used to determine the areas to be searched. Fortunately, there
are properties of B-spline or B-splinelike surfaces which can be exploited
to help assure global convergence of the algorithms. In particular, as B-
spline patches are recursively subdivided [41, simple geometric tests based
on bounds for both principal radii of curvature of the patches can be used
to determine if it is possible for a twinkle (or initial specular point) to exist
on that patch. With the use of a suitable stopping point, the patches could
be subdivided (the majority being thrown out at each step) until only arbi-
trarily small patches exist which may contain twinkles (or initial specular
points). Such algorithms should prove to be both rapid and robust. In
addition, the method should extend readily to the multiple-bounce case,
although it is not intuitively obvious what the more generalized geometric
tests should be at this time.
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AN ALGORITHM FOR PROCESSING SCANNING SPECTROMETER DATA

Joseph E. Zurlinden
Directed Energy Directorate/Operations DivisionU.S. Army White Sands Missile Range, New Mexico 88002-5148

ABSTRACT - A method of processing data acquired from a scanning
spectrometer is described. The method employs an algorithm de-
signed to find the spectral data from a continuous stream of data
from the spectrometer and to provide the experimentor with the rel-
ative peak intensities and relative powers of the known spectral
lines. This algorithm does not require the use of outside refer-
ence sources, such as an electronic pulse synchronized with the
output of the spectral data, to find each frame of spectral data.
This can save thirty-three percent of the memory storage otherwise
required for all the data from the spectrometer, and approximately
twenty-five percent of the processing time on the computer.

I. INTRODUCTION. The High Energy Laser Systems Test Facility
(HELSTF) is a research center for testing effects on various mater-
ials utilizing a high powered laser. The Army provides support to
users in the form of secure and safe areas for performing experi-
ments, and data acquisition and computer systems for collecting and
processing the data. The author, as the data analyst insures that
the test data is acquired successfully and processed satisfactorily
before it is given to the user. The author presents in this paper
a description of one of the data collecting instruments used at
HELSTF, a scanning spectrometer, and the software developed to pro-
cess the data from the scanning spectrometer. The algorithm is not
original, but its use in this particular application anywhere else
is unknown to this author. .

Figure 1 shows a simplified diagram of the optical setup of
the scanning spectrometer. This configuration is called a double-
path Czerny-Turner spectrometer. Light from the source enters
through the cassegrain subsystem at the lower left of the diagram. %
Optimum efficiency of the spectrmeter occurs when the cassegrain
optics focuses the light on the slit such that the light fully il-
luminates the diffraction grating. The light proceeds from the %

slit to the lower spherical mirror, is reflected to the reflecting
diffraction grating, after which the upper spherical mirror col-
limates and directs the dispersed beam to the flat mirror which

reflects the dispersed beam to the scanning corner reflector. The
scanning subassembly consists of 24 corner reflectors attached to
a rotating disk with multiple rotating speeds available. The
speed chosen here is such that the spectrum is scanned 800 times
each second. As the corner mirror scans the spectrum, the light
is reflected back through the Czerny-Turner optics where it trav-
els back over the original paths until it is diverted to the two
indium antimonide (InSb) detectors. These detectors are cooled
to 77'K with liquid nitrogen; and they operate in the photocon- p

Vductive mode.
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Figure 2 shows a simplified functional diagram of the photo-
metric process. The detector sees a photon with frequency f and
its conductivity is modified which produces a certain voltage
level at the output of the circuit. The voltage level is measured
with an electronic meter and recorded. The responsivity of the
detector defines how much power corresponds to the measured volt-
age. There are many factors which determine the responsivity of
a detector; such as the chemical composition, the environmental
temperature, and so on. One can easily read more from a book on
detectors. The box furthest to the right represents the process
of calculating the absolute power from the responsivity values
and the signal values.

The output from the detectors are fed into some amplifying
electronics and output to BNC jacks. The two outputs cover the
spectral region from 3.6 microns to 4.05 microns. The short
wavelength region covers 3.60 to 3.85 microns and the long wave-
length region covers 3.80 to 4.05 microns. Prior to each scan
of the spectrum an electronic pulse, called the sync pulse, is
generated with a duration of 0.250 milliseconds. This provides
for a 1.0 ms duration for each frame of spectral data. This
allows for a relation between the scan time and the wavelength
of the spectrum. Plots of the signals are shown in Figure 3.
The uppermost plot is all three signals multiplexed. The lower
three plots are the three individual signals. The process of
multiplexing data signals can be found in most books on digital
communications. This data is from the spectrum of a chemical
laser using deuterium and fluorine. The laser device is oper-
ated by TRW.

During the test, data from the spectrometer is FM recorded
locally on three channels of the analogue tape. After the test,
the FM tape is played back and the data digitized and multi-
plexed onto another tape. When one wishes to process the spec-
tral data, it is transferred to disk and demultiplexed.

Originally the author's task was to take the demultiplexed
data and develop software to determine the spectral line inten-
sities and calculate the relative powers within the spectral
lines. It was assumed that the first spectral line always oc-
curred within a determined time interval and that the distances,
in time or wavelength, between all the spectral lines remained
constant. The software was designed to use as a reference point
a specified level value of the leading edge of the sync pulse.
Therefore, the program would read the sync pulse data and upon
finding the reference point, it would know that it had to read
so many points of the short and long wavelength data files be-
fore reaching the first spectral lines in each file. The pro-
gram knew that the second lines were a certain number of data
points from the first, the third from the second, and so on.
These distances were different in the short and long data files.
The program was run using test data and the output of the pro-
gram seemed satisfactory; therefore, the task completed suc- p
cessfully, until a new requirement was generated by one of the
users.
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One user was interested in seeing how each spectral line's
intensity varied during the course of the test. I merely had
to modify the program so that as the light intensities were
determined they were written to a file: one file for each wave-
length. The same was done for the energy in each line. The
first time the modified program obtained outputs which resem-
bled the plots of the spectra. A careful analysis revealed
that the spectra was shifting relative to the sync pulses.
However, the spacing between the spectral lines remained con-
stant from one frame of data to the next. The cause of this
shift was not immediately apparent, although it was thought
that it was not in the software I had been developing. The
cause for the shifting of the spectrum was found to be in the
parameter values used in the demultiplexing algorithm. The
error in these values caused a number of data points to be
skipped over causing the spectrum data to be shifted toward
the sync pulse data.

It was decided at this point not to use the sync pulse
data and to find an algorithm which would identify the spec-
tra using the characteristics of the spectrum itself. The
only characteristic chosen was the spacing of the spectral
lines, which one could consider as a pattern that occurred
periodically many times in a long stream of time-series data.
Here was a problem which was solvable using pattern recog-
nition techniques.

II. DISCUSSION. The technique employed is based on the
convolution integral. Here the integral is expressed as a
summation because the data consists of discrete points.
The expression is written as:

N
C(t) T f(i)s(i-t),

i=l E

where C(t) is the correlation at the t data point, f(i) is
the ith point of the template or filter, and s(i) is the
ith point of the real spectrum. As t increases to the end
of the data, C(t) will vary and fluctuate from relative
minima to relative maxima (see Figure 6). The number of
data points in one frame of data is approximately 626 ± 4.
There will be one relatve maxima for every 626 ± 4 consec-
utive values of C(t), and at this value of t, a spectrum
begins. A complete explanation of correlation functions
can be found in any text book on digital communications
theory.

The software does three major functions: reads the
data, scans the data determining locations of the frames of
spectral data while it finds the peak intensity of each line
and the relative energy in each line, and finally goes back
and calculates frame averages of the spectra according to the
options given to the user.
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The user starts the program and enters values which a-
llows the program to determine how much of the data is to be
processed, whether or not averages are to be calculated, and
how many are to be calculated. The data is then read and
stored in memory, where now one-third less data is needed to
be read and stored because the sync pulse data is no longer
necessary. The spectral data is scanned and the locations
of the spectra are determined and stored in memory. (See
Figures 4, 5, 7, and 8). As the scanning is proceeding each
value of the spectral line peak intensity is stored in a
separate file, one file for each wavelength where a spectral
line exists. The same is done with the energies within each
line.

There are two detectors used and, therefore, values are
different even for the same wavelength signal input. There-
fore, the ratio of the energy contained within a line seen
by both detectors is taken and the data from one detector
corrected for the differences between the detectors. The
short and long spectral data is concatenated at the overlay-
ing regions to show the entire spectrum, as shown in Figure
9.

Finally the program calculates averages if they were re-
quested. If not, the program is finished. If averages are
requested, then the number of sets of frames will be averaged.
If more than one set of frames is averaged, then the first set
of N frames is averaged, then the next set is made up of aver-
aging N frames starting with the second frame and including
the (N+l)th frame.- This continues until the program executes
all the instructions based on the values the user inputs at
the start of the program.

III. CONCLUSION. The degree to which the software is suc-
cessful, in its ability to recognize the spectrum, is obvious
as can be seen in Figure 9. The top plot shows a single
frame of data. The bottom plot shows the average of 200 con-
secutive frames which were averaged together. The width of
the lines in the averaged frame are the same as those in the
nonaveraged frame. This would not be the result if the rec-
ognition of the spectrum, by the artificial spectrum (tem-
plate or filter) was off by even one data point in position.
This is the purpose of the algorithm because once the spec- 41k_
trum is located, the calculations are straight forward. The
relative energies in the spectral lines were calculated using
the trapezoidal rule. The software I developed was done us-
ing FORTRAN 77 on a VAX11-780 computer system.
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THE KP EQUATION - A COMPARISON TO LABORATORY

GENERATED BIPERIODIC WAVES*

Norman W. Scheffner

U.S. Army Engineer Waterways Experiment Station
Coastal Engineering Research Center

Vicksburg, MS 39180

ABSTRACT. The propagation of waves in shallow water is a phenomenon of
significant practical importance. The ability to realistically predict the
complex wave characteristics occuring in shallow water regions has always been
an engineering goal which would make the development of solutions to practical
engineering problems a reality. The difficulty in making such predictions
stems from the fact that the equations governing the complex three-dimensional
flow regime can not be solved without linearizing the problem. The linear
equations are solvable; however, their solutions do not reflect the nonlinear
features of naturally occuring waves. A recent advance (1984) in nonlinear
mathematics has resulted in an explicit solution to a nonlinear equation
relevant to water waves in shallow water. The solution possesses features
found in observed nonlinear three-dimensional wave tields.

The nonlinear mathematical formulation referred to above has never been
compared with actual waves, so that its practical value is unknown. The
purpose of the present investigation was to physically generate three-
dimensional waves and compare these with exact mathematical solutions. The
goals were successfully completed by first generating the necessary wave
patterns with the new U.S. Army Engineer Waterways Experiment Station, Coastal
Engineering Research Center's (CERC) directional spectral wave generation
facility. The theoretical solutions were then formed through the determination
of a unique correspondence between the free parameters of the solution and the
physical characteristics of the generated wave.

I. INTRODUCTION. One of the first mathematical models of nonlinear
waves in shallow water with known solutions was presented by Korteweg and
deVries in their famous 1895 paper. Their formulation, known as the KdV
equation, can be written in the following nondimensional form

ft + 6ffx + fxxx - 0 (1)

in which f represents the water surface displacement, x is the direction
of propagation, and t is time. This equation admits not only solitary wave
solutions but also the periodic solutions commonly known as cnoidal waves.

Presented at the 20th International Conference on Coastal Engineering,
November 9-14, 1986, Taipei, Taiwan and included in the proceedings thereof
entitled "Biperiodic Waves in Shallow Water"
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These solutions can be written as

f(x,t) = 2o2 k2 cn2 (6;k) - 2a 2 7(k) _ 1 +k2 (2)

where each of the terms in the solution are well documented analytic functions
which can easily be computed in terms of known wave characteristics such as
wave height and wavelength. Unfortunately, cnoidal wave solutions are valid
only for long crested waves, e.g., waves which can be described by a single
time-dependent one-dimensional surface wave pattern. Natural waves, in
contrast, are composed of both long and short crested waves and can not be
adequately described by this theory.

A recent advance in nonlinear 'mathematics has been reported by Segur and
Finkel (1984). They present explicit analytical solutions to a natural three-
dimensional extension of the KdV equation proposed by Kadomtsev and
Petviashvili (1970), known as the KP equation shown below

(ft + 6ffx + fxxx)x + 3fyy " 0 (3)

where x now represents the primary direction of propagation; however, weak
changes in the y-direction are now permitted. When no y-variations occur, the
KP equation reverts to the KdV equation.

The KP equation admits an infinitely dimensional family of exact,
periodic solutions (see Dubrovin, 1981 and Segur and Finkel, 1984) which can
be written in the form

f(x,y,t) - 2- 21 n  (4)ax 2

where a is a Riemann theta function of genus n . Genus 1 solutions are
exactly equivalent to cnoidal waves, they are permanent form, singly periodic,
two-dimensional (one vertical and one horizontal) nonlinear waves. Genus 2
waves are biperiodic in that they permit the independent specification of two
periodicities in both time and space. The solutions are genuinely three-
dimensional, nonlinear, and propagate with permanent form at a constant
velocity. Genus 3 and higher order solutions are multi-periodic and can not
be characterized as permanent form with respect to any translating coordinate
system as the genus 1 and 2 solutions can. This present investigation is
limited to the genus 2 solutions developed by Segur and Finkel.

The construction of a genus 2 solution of the KP equation is based on the
specification of the appropriate Riemann theta function. This requires the
introduction of a two-component phase variable and a 2 X 2 real-valued
Riemann matrix. The first of these, the phase variable, is shown below.

0I= V1 x + V 1y + 1 t 10

and 
(5)
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02 u"2 x + V 2Y + W2 t 
+ 020

Where the parameters jI , 1 2 v1 . and v are wave numbers, W1 and
are angular frequencies, and - and *22 are constants with no dynamical
significance. The second ingredent invo ves the specification of a real-
valued, negative definite, symmetric 2 X 2 Riemann matrix as shown below.

b bA
B -bLb 2  (6)

The parameters b , d , and X represent solution nonlinearity. The genus 2
theta function can now be defined in terms of the above components by the
following double Fourier series:

e(01 9021B) e ex p(~ B -M"'+ M (7)

The calculation of a general case genus 2 KP solution requires the
specification of the 11 parameters shown in Equations 5 and 6. Two of these
parameters ( 0 and 0 ) have no dynamical significance, their only effect
is to shift the origin or the resulting solution. Dubrovin (1981) proved that
a genus 2 thta function in the form of Equation 7 was a solution to the KP
equation if, and only if, the solution parameters were related by four
additional equations. One of these equations contains a constant of
integration. Use of this additional criteria reduces the number of free
parameters to 8, representing the minimum number of free parameters required
to specify a general case genus 2 solution.

Genus 2 solutions of the KP equation describe a complex two-dimensional
surface wave pattern. Similar features were observed by Hammack (1980) to
result from the nonlinear interaction of two intersecting waves. The
theoretical development by Segur and Finkel was partially prompted, in fact,
by these reported waves. The development of an experimental program which
would result in the generation of surface wave patterns qualitatively similar
to genus 2 solutions was achieved by attempting to experimentally reproduce
the conditions reported by Hammack, i.e., intersecting waves. This generation

technique can best be described by presenting the analogy of interacting
waves. Consider, for example, two periodic waves which intersect and pass I
through each other as shown in Figure 1. The angles a and a represent the A
angle of the crest of each wave front with respect to s2 me reference line.

The resulting surface wave pattern, according to linear wave theory, would
simply be a superposition of the two individual waves. This would produce a
diamond shaped surface pattern as indicated in Figure 1. It can be seen that
certain of the basic characteristics of the individual waves, wavelength and
angle of propagation for example, have been preserved.
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Now, consider the analagous case in which similarily intersecting waves
interact nonlinearily with each other. This scenario is shown schematically
in figure 2. The resulting wave pattern shows that a "stem of interaction" is
formed at the point where the two waves cross each other. The formation of
this stem region is a result of a phase shift in the crest line angles of the
original waves. This phenomonon is shown in Figure 2 superimposed on the
corresponding linear wave solution. The resulting surface wave pattern now
assumes a hexagonal pattern in which a third wave crest, seperate of the
original two, is formed. This phase shift and stem formation are indicative
of the nonlinear interaction of the two waves since the exact linear solution
does not predict either the phase shift or the new wave crest. Genus 2
solutions of the KP equation predict these features and was tested as a
possible model for their description.

II. LABORATORY FACILITIES AND EXPERIMENTAL PROCEDURES. A project was
initiated at CERC to generate three-dimensional nonlinear wave fields in the
laboratory and then apply KP theory to the resulting waves in order to
determine whether or not the KP equation was a model for these waves and, if
so, what was the range of its applicability. This required the use of the CERC
directional spectral wave generation facility. This unique wave generator,

shown in Figure 3, was designed and constructed for CERC by MTS Systems
Corporation of Minneapolis, Minnesota based on design specifications provided
by CERC. The generator is comprised of 60 individually programmable

electromechanical wave paddles. Each wave paddle is 1.5 ft wide making the
generator a total of 90.0 ft wide. The generator is located in a 98.0 by
184.0 ft wave basin with 2.5 ft high side walls. Computer control of the
system is provided by a Digital Equiptment Corporation (DEC) VAX 11/750
central processing unit. The above facilities were utilized to generate genus
2 candidate waves in a comprehensive experimental program.
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The wave generator was programmed to simultaneously generate intersecting 
cnoidal wave trains. A variety of wave fields were generated by varying both 
the wavelength of the individual waves and their angle of intersection. Twelve 
wave fields, generated in this manner, were used to test the KP equation, The 
wave fields selected for the experimental program are presented in Table 1. 
Waves characterized by three wavelengths (7, 11, and 15 ft) were combined with 
phase shifts between adjacent wavemaker paddles. These phase shifts were 
approximately equivalent to the angle of the wavecrest with respect to the 
axis of the wave generator. The angle in the table shows the approximate 
correspondence between the phase lag and the angle of propagation. 

Table 1 
The experimental waves 

7- 

Test Number Wavelength Phase Shift 
(ft) (deg) Angle   (deg) 

7.45 

Period   (sec) 

CN1007 7.0 10.0 1.378 

CN1507 7.0 15.0 11.21 1.378 

CN2007 7.0 20.0 15.03 1.378 

CN3007 7.0 30.0 22.89 1.378 

CN1007 7.0 iJO.O 31.23 1.378 

CN1011 11.0 10.0 11.75 1.947 
CN1511 11.0 15.0 17.79 1.947 
CN2011 11.0 20.0 24.0lt 1.947 
CN3011 11,0 30.0 37.67 1.947 

CN1015 15.0 10.0 16,12 2.553 
CN1515 15.0 15,0 2iJ.62 2.553 
CN2015 15.0 20.0 33.75 2.553 

Genus 2 solutions can be visualized as a series of repeating two- 
dimensional permanent form surface patterns, referred to as period parallel- 
ograms. These patterns translate at a constant velocity in a constant 
direction. The global wave field is represented by a tiling of these basic 
patterns; therefore, the entire wave pattern can be exactly specified by 
quantifying just one period parallelogram. The location of a basic parallel- 
ogram within the hexagonal wave field of Figure 2 is shown in Figure 4, The 
phase variables of Equation 5 define the horizontal limits of these patterns 
such that each side is uniquely defined by <))  = constant and <^      = constant. 
The components of the Riemann matrix define the vertical and horizontal 
distribution within the period parallelogram. 
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Direction of Propagation 
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Figure ^.     The Period Parallelogram 

Detailed measurements of each of the generated wave fields shown in 
Table 1 were required in order to relate the physical characteristics of the 
waves to the parameters of the corresponding period parallelogram of the exact 
solution. This quantification was accomplished by first using overhead 
photography to determine the dimensions of the period parallelogram and to 
provide an estimate of the internal features, such as the phase shift and stem 
length. Knowledge of these horizontal features and their location within the 
wave tank were then used to locate a linear array of 9 recording wave gages in 
the wave basin. This approach provided a vertical wave record which could be 
identified with a known location within the parallelogram. 

jcribed above generates symmetric cnoidal waves ( a.   =    a„    in 
III.  COMPARING THEORETICAL SOLUTIONS TO OBSERVED WAVES.  The experimental 

program desc 
Figure 1) n 
was adopted 
perpendioul; 
measure all 
reduces the 

^1 ,:„,''2, 

esulting in a symmetric period parallelogram. This simplification 
so that the generated wave patterns would all propagate 

arly off the axis of the wave generator, making it possible to 
wave forms with a single stationary wave gage array. Symmetry also 
number of free parameters which need to be specified, for example, 

V,  = -v^ , and lo^  = oj^ from Equations 5.  This 
ion results in the requirement of only three dynamical parameters 
dynamical parameters. The parameters choosen were b , u  . and 

slmplificat 
and two non 
X along with the phase shift parameters i^^^  and (fi 

sequence of 
CN3007 will 

MO ;o. The following 
events was used for optimizing these coefriclents 
be used to demonstrate the verification process. 

Experiment 

Each of the waves of Table 1 were generated in the wave basin. Two 
overlapping photographs were taken with dual Hasselbladt model 500EL/M 70mm 
cameras equipped with 50mm lenses mounted 23 ft above the floor of the basin. 
The resulting mosaic photograph, shown in Figure 5, was used to estimate the 
length and width of the period parllelogram. This resulted in estimates for 
U  = y and v = -v„  . An estimate for the phase shift parameter A was 

also determined from the photograph. The accuracy of p  ,  v , and A is a 
function of the distortions in the photograph.  Because of this distortion, 
their values were considered to be initial estimates.  Following the 
photographing of all waves, a gage spacing of 2,5 ft apart and 40.0 ft from 
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Figure 5.  Overhead Mosaic Photograph of Test Wave CN3007 
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and parallel to the generator was selected for use in all tests. The location
of each of the gages with respect to wave CN3007 is shown in Figure 5. It can
be seen that each gage can be uniquely referenced according to a distance from
the center of the parallelogram. Since all parallelograms are identical, wave
gages located in an adjacent parallelogram can be referenced to the common
center point.

Wave gages were located in the basin and each of the waves of Table 1
were regenerated. Data were sampled for each of the gages at a rate of 50
samples per second for a total of 30.0 seconds. Figure 6 shows the wave
traces for CN3007. The correspondence between the wave traces and their
location within the parallelogram can easily be seen. For example, gage 5 is
located on a stem where only one peak per passing of the parallelogram is
experienced. Gage 3 is located in the saddle region where two smaller peaks
per period are seen. This comparison demonstrates the usefulness of the
photographs in interpreting the data since three-dimensional effects are
difficult to deduce from two-dimensional data.

The determination of the free coefficients can now be made. Known or
estimated data are the period of the wave (determined from the recording wave
gages), the length and width of the period parallelogram and an estimate of
the phase shift parameter A determined from the photographs, and a maximum
wave height selected from the wave gage data. The following iteration
procedure was used to optimize the coefficients:

a. The estimated values for 4 -1U2 v1 = -v2, and A were specified.
The nondynamical parameters 010 anA 0 were accounted for by specifying
solutions to be computed at location witg2 n the period parallelogram
corresponding to the location of the wave gages. A value of b was then
selected such that the dimensionalized maximum KP solution was within 5.0
percent of the measured value.

b. The value of V - V was adjusted, if necessary, until the
dimensionalized period ws within 3.0 percent of the measured period.

c. The value of A was adjusted, if necessary, until the dimensionalized
value of v - 2 was within 10.0 percent of the estimated value. A 10-
percent criteria was used for this iteration since the length of the
parallelogram was difficult to determine from the photographs.

d. Because of the nonlinear coupling of the solution coefficients, each
adjustment affected all parameters to some extent. If corrections were found
to be necessary, steps (a.) through (c.) were repeated until all of the
specified tolerances were met or exceed-ed. Possible phasing problems
regarding the gage locations within the parallelogram were rectified by
adjusting the nondynamical phase parameters.

e. A KP solution corresponding to the location of each of the wave gages was
calculated. A normalized plot comparing theory to measurements was made, as
shown in Figure 7 for the present example. Included in each plot is the Root
Mean Square (RMS) error for each comparison.
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Figure 6. Wave Gage Traces for Test Wave CN3007
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CNOIDAL TEST CN3007 MAX ZETA ICMP) = 0.394
ZETA(MA ZEA)DEPTH IFT) 1.000

CEAOMPUZETA 2 .*PI/NU (FTI 17.028
-CMPUTED 

2.*PI/MU (FT) 7.854
MEASREDPERIOD (SEC) 1.378

MAX ZETA JOB-IN) =3.239

0 GAGE # 9. y 1.50 FEET
RMS ERROR 0.077

0GAGE # a. y 1.00 FEET
RMS ERROR 0.089

GAGE # 7. y 3.50 FEET
~S**A~~RMS ERROR 0.209

cc GAGE #6. Y .00 FEET
RMS ERROR 0.095

2K 0GAGE # 5. y 8.50 FEET
3E- RMS ERROR 0.253

___GAGE #4. y 00 FEET

GAG #3 y 3.50 FEET
SRMS ERROR 0.163

0.. GAGE # 2. y 1 .00 FEET
~ RMS ERROR 0.093

GAGE y 1. z 1.50 FEET
RMS ERROR 0.167

- AVERAGE RMS ERROR= 0.143

0.2 0.4 0.6 0.8 1.0I

Figure 7. Theoretical and Measured Wave Profiles for the Nine I
Wave Gages of Test Wave CN3007
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f. A normalized contour plot (Figure 8) and a three-dimensional plot
(Figure 9) for each wave field was finally prepared as a visual example of the
KP solution. U

The above procedures were followed for each of the test wave fields of
Table 1. A minimum tolerance of 5.0 percent for waveheight, 3.0 percent for
period, and 10.0 percent for the Y-direction wavelength was maintained for all
experiments. Table 2 presents those computed results. For each case, an
average RMS error is provided which represents a simple average of the 9 RMS
values computed for each gage. In no case did this error exceed 20 percent
even though variations in the elevation of the basin floor of 10 percent were
known to exist. Additionally, the experimental wave fields were generated
almost to the point of breaking in order to span the range of solution
parameters and investigate the limits of applicability of the genus 2
solutions. In view of these introduced and existing sources of potential
error, the degree of fit between the generated wave fields and the exact
solutions were found to be very good.

Table 2
Computed wave parameters

Test Max. Height X-Wavelength Y-Wavelength
Number (in) (ft) (ft) Ave. RMS Error

CN1007 2.44 7.0 46.5 0.141
CN1507 3.59 7.2 35.1 0.188
CN2007 3.06 7.5 27.3 0.150
CN3007 3.24 7.9 17.0 0.143
CN4007 3.30 8.7 13.6 0.184

CN1011 2.23 10.7 48.0 0.174
CN1511 2.87 11.1 40.3 0.122
CN2011 3.10 11.6 27.6 0.126
CN3011 2.48 12.6 20.7 0.172

CN1015 2.65 15.0 59.3 0.120
CN1515 2.84 16.1 32.6 0.094
CN2015 2.86 17.1 29.0 0.098 Ow_

IV. CONCLUSIONS. Twelve seperate nonlinear wave fields were generated for
the purpose of verifying the KP equation to be an accurate model for three-
dimensional nonlinear waves. Criteria were developed which provided a unique 01

correspondence between the solution parameters of the KP equation and the
physical characteristics of the laboratory generated waves. Results of these
experiments showed that both the generated waves and the genus 2 solutions are
remarkably robust in that both were stable over a wide range of parameters,
including the near breaking of waves. The excellent degree of fit between the
observed and computed solutions shows that the genus 2 solutions of the KP
equation represent a viable model for three-dimensional, nonlinear, shallow
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ASYMPTOTICS BEYOND ALL ORDERS
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ABSTRACT: Conventional asymptotic methods often fail to
capture effects that are transcendentally small because these effects
lie beyond all orders in the asymptotic expansion. New methods
have been developed recently to find transcendentally small terms
in problems where they control the entire solution. This paper
surveys some of these recent developments.

TEXT: When a differential equation that cannot be *solved
exactly contains a small parameter, conventional asymptotic methods
often can be used effectively to find approximate solutions[l]. In a
small but significant class of problems these conventional methods
uttterly fail, because they provide no nontrivial information at any
order of the expansion. In these problems it is necessary to go
beyond all orders in the asymptotic expansion to answer questions of
interest. "Asymptotics beyond all orders" describes the more
delicate methods required to obtain information in these pathological
problems.

The essential problem can be seen in a simple function like

f(e) = exp(-l/ E ), 0< E <<1. (1)

The function is well-defined, and it is positive for any positive E , no
matter how small. The function is not analytic at - = 0, so it has no
Taylcr series there. If one ignores this fact and tries to evaluate f( E)
for small E with a formal "Taylor series", one obtains zero at every
order of the expansion:

f(E) - 0+ E-0+ JO + E30.. . (2)
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(Here - means "is asymptotically approximated by" [1].) Clearly (2)
does not imply that the function is zero, but simply that the
expansion is too crude to evaluate it.

This example is too simple to be realistic, but a variation of it is
common: the function is not given explicitly, as in (1), but rather it is
defined implicitly by a differential equation. For example, let

D(y, x; E)= 0, 0<e <<1, (3)

represent some differential equation which, along with boundary
conditions, uniquely defines its solution y(x; E). We imagine that the
equation comes from some application, and that the question of
interest is to determine the sign of y(O; E), the solution of (3) at x=O.
If the differential equation cannot be solved exactly, as most cannot,
conventional asymptotic methods [1] can be used to generate an
approximate solution. In the simplest cases, the series contains only
increasing powers of E:

y(x; E) v y.(x) + E y,(x) + 0- yL(x) +...

How many terms are needed in this series depends on the problem,
but in any case the sequential approximating functions are obtained
explicitly. With these functions explicitly in hand, one evaluates
them sequentially at x=O to obtain an increasingly accurate
description of the desired function, y(O; e). Ordinarily this approach
is successful, but occasionally one finds that at x=O:

y.(O) = O, y, (0) = O, yt(O) = O,...,

and one can show recursively that at every order of the expansion,
y,(O) = 0. In this problem, therefore, one has shown that y(O; E)
vanishes to all orders in the asymptotic expansion. It follows either
that y(O; E) = 0, or that y(0; E) is transcendentally small, as in (1).
Thus the calculation has failed completely to answer the question of
interest: whether or not y(0; E) is positive. This failure persists even
if the expansion is carried to all orders; in this problem it is simply
too crude to answer the question.

At this point the reader may concede that conventional
asymptotic methods cannot detect transcendentally small terms, but
may wonder why anyone would care about such small effects. I now
describe briefly some problems in which this issue has arisen, and in
which the most fundamental questions about the problem hinge on
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whether certain transcendentally small terms do or do not vanish.
In these problems, questions like "Does a solution exist?" cannot be
answered without going beyond all orders in the asymptotic
expansion. This brief survey does not discuss how to solve these
problems , but references to the recent literature are given below.

It should be mentioned that transcendentally small effects
have been evaluated in particular linear problems over the last 30
years [2, 3, 4, 5, 6]. What distinguishes the recent flurry of activity is
the realization that no linear structure is required, and the recent
work has treated fully nonlinear problems. On the other hand,
almost all of the recent work that has appeared in print to date is
formal, with no assertion of rigor.

My first example is known as "viscous fingering of fluids", or
as the "Saffman-Taylor paradox", after the famous paper by these
authors [7]. Motivated by a problem of interest in petroleum
engineering, Saffman and Taylor studied the slow motion of the
interface between two fluids of different viscosities (such as oil and
water). They found experimentally that when the fluids were
confined to a narrow gap between two parallel walls (a Hele-Shaw
cell), the less viscous fluid could be made to push steadily into the
more viscous fluid in a single symmetric, uniformly growing "finger".
They also found experimentally that the width of this finger far from
the tip was extremely predictable ( N = 1/2 in their dimensionless
notation) in the appropriate range of their experimental parameters.

In the same paper, the authors analyzed the (Navier-Stokes)
equations of motion, seeking a steady-state solution to describe this
steadily growing finger. They found that if they made certain
plausible approximations, including neglecting surface tension, then
they could find a continuous family of exact solutions of the resulting
equations. This family was parameterized by N, the finger width.
The solution corresponding to N=1/2 agreed well with their
experimental data. However, the question of identifying the
selection mechanism that picked out - =1/2 in their experiments

remained open.
The hypothesis that surface tension provided the selection

mechanism was tested by McLean and Saffman [8], who developed
an asymptotic expansion for the shape of the finger in powers of the we
(small) surface tension, starting at zeroth order with a Saffman-
Taylor solution. These exact solutions were left-right symmetric, and
McLean-Saffman intended to show that this symmetry was broken in
the presence of any small, positive surface tension. To their surprise
they found that the symmetry, and therefore the continuous family
of solutions found in [7], persisted to all orders in their asymptotic J,
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expansion; i.e., they found no analytical evidence that surface tension
provided the selection mechanism observed experimentally. Adding
to the confusion were numerical experiments by them [8] and by
Vanden Broeck [9], using finite values for the surface tension, which
seemed to indicate that surface tension did provide a selection
mechanism.

The paradox was resolved in three papers published
simultaneously [10, 11, 12]. Each of these papers showed that small
surface tension does indeed break the symmetry and destroy the
continuous family of solutions. However, the symmetry is broken by
an exponentially small amount, so this breaking lies beyond all
orders in the asymptotic expansion in [8], and it is not captured by
that analysis. This is an example of a problem of physical interest in
which the most basic question one can ask about the model, whether
it even has a solution for arbitrary values of A, cannot be answered
without going beyond all orders in the asymptotic expansion.

A second example arises in the study of growing crystals in a
supercooled melt of a pure substance. The verbal description of the
problem is quite similar to that of the viscous fingers. Under
appropriate conditions, a solid crystal is observed to grow into the
liquid melt. The overall shape of the crystal is complicated and time-
dependent, but the tip apparently grows with a nearly constant
shape and at a nearly constant speed. From the speed and radius at
the tip, one can form a dimensionless Peclet number, and this
number is observed experimentally to depend only on the substance
in question and on its temperature.

Important theoretical work was done by Ivanstov [13], who
found that by neglecting surface tension, he could produce a
continuous, one-parameter family of exact, steadily growing, two-
dimensional crystal shapes, called "needle crystals". These were
later generalized to three-dimensional needle crystals with
ellipsoidal symmetry [14]. In both cases the free parameter was the
Peclet number. Thus we have a second paradox: the theory predicts
a needle crystal for every Peclet number, while the experiments
show that one Peclet number is always selected. Again the question
arises: What is the selection mechanism? In particular, does a small
amount of surface tension break up the continuous family of exact
solutions?

With surface tension included, the exact governing equations
for this problem are quite complicated [15], and two simplified
models were constructed to help to guide the analysis[16, 171. In a
paper which (embarrassingly) is still unpublished, Kruskal and
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Segur[18] obtained the following results for one of these models (the ii"geometric model").
(a) Without surface tension, the model admits a spatially symmetric
needle-crystal solution for every Peclet number.
(b) With or without surface tension, every needle-crystal solution in
this model must be spatially symmetric.
(c) For small surface tension and for every Peclet number, the
model admits an asymptotic expansion for a needle crystal that is
symmetric to all orders in the expansion.
(d) For sufficiently small surface tension, every solution of the
model is asymmetric. The amount of asymmetry is exponentially
small, so it is missed at every order of the asymptotic expansion.
Even so, it follows that the geometric model has no needle-crystal
solutions for small surface tension, even though they exist to all
orders in the asymptotic expansion.
(e) If one adds to the model a second parameter ("crystalline
anisotropy"), then for each value of that parameter the model admits
a needle crystal only for a discrete set of values of the Peclet
number.

Some of these results were also obtained by others, using
different means of analysis [19, 20]. From our standpoint, the main
conclusion of all of these analyses is that the question of whether the
geometric model even has a needle-crystal solution cannot be
decided without going beyond all orders in the asymptotic expansion.

In more recent work [21] it has been claimed that a similar
situation occurs in the full equations for needle crystals.

Now let us consider a third example in which asymptotics
beyond all orders plays a decisive role. In one spatial dimension, a
Klein-Gordon equation is a partial differential equation of the form:

u~t - ux,= g(u), g(0) = 0, g'(0) > 0.

In the usual linear equation, g(u) = mu, where m represents "mass".
Out of all possible nonlinear equations, two that have been studied
extensively are the sine-Gordon equation with g(u) = sin u, and thi
,4 -model with g(u) = 2u-3u 2 +u3  The latter name comes from
setting u = * + 1, after which the Lagrangean density for this model
differs from that for the linear model by a term ( .4 ).

A "breather" is defined to be a real-valued solution of a
nonlinear Klein-Gordon equation that is localized in space and
periodic in time, with a nontrivial period. If one thinks of the Klein-
Gordon equation as a classical model of a field theory in one
dimension, then any localized solution might represent an
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elementary particle and a breather might represent a particle with
an internal degree of freedom. Breathers have physical importance
if they exist. b

Breathers are known to exist for the sine-Gordon equation [221:

u(x,t) = 4 arctan { [w / I sech -%/I x. sin w t )

The question is whether they exist for any other Klein-Gordon
equations. For small amplitudes (i.e., u<<l), the sine-Gordon and the
OA -models approximate each other, so one expects the 4 -model to
admit at least an approximate breather solution for small amplitudes.
It turns out that the +4 -model admits an asymptotic expansion for a
breather in a small amplitude limit, and that this expansion can be
carried to all orders without developing any secular terms. This
approximate breather was used by Dashen, Hasslacher and Neveu
[23] in their quantization of 4. The question of whether the
expansion represents a true breather solution was not addressed by
them.

Segur and Kruskal [24] showed the +4 -model admits no true
breathers in this limit. The asymptotic expansion does represent
true solutions to the equatioi., but none of them are both localized in
space and periodic in time. Typically, these solutions radiate energy
away, but at a rate that is exponentially small, and that is missed by
the asymptotic expansion even when carried to all orders.
Nevertheless, this exponentially small radiation rate is enough to
carry away all of the energy eventually, so eventually the breather
disappears.

A final example involves an ideal pendulum under the
influence of small, periodic forcing [2 5J. It is known that a small,
periodic forcing at moderate frequency of a pendulum typically
destroys the integrability of the problem and introduces chaotic
trajectories of the pendulum. The concrete evidence of ._
nonintegrability (the Melnikov integral) vanishes to all orders in the
high-frequency limit, but Holmes, Marsden and Scheurle [25] showed
by evaluating exponentially small terms that the forcing destroys
integrability in this limit as well.

Perhaps it is appropriate to conclude this survey with two
general remarks. The first is that all of the problems mentioned here
are pathological, in the sense that it is rare for an asymptotic
expansion to yield no information at any order. The existence of
these pathological examples does not mean that no asymptotic
expansion should be trusted, but rather that they must be
interpreted correctly. The second remark is that even though these
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examples are pathological, they are not unphysical. Each came from
a real-world problem of physical interest. Pathological problems do
arise in physical contexts, but only occasionally.
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COMPUTATIONAL ISSUES IN GOAL PROGRAMMING

RESOURCE ALLOCATION

Leon Medler

U.S. Army Troop Support Command
Belvoir RD&E Center

Fort Belvoir, VA 22060-5606

I. EXECUTIVE SUMMARY

The US Army Belvoir RD&E Center has been engaged in a
program of research aimed at devaloping an efficient and fair
methodology for ranking proposed RD&E programs. A linear goal
programming model (LGPM) has been the foundation of this method-
ology. Problems with this approach have surfaced in two areas:
(1) excessive computer time and (2) anomalous results. This
paper reports on research conducted in order to redress these
problems. Analysis of the existing model indicated that time
expenditure in sensitivity excursions was the major culprit.
Sensitivity analysis was being conducted by decrementing resource
constraints and rerunning the LGPM "from scratch." Since
virtually as much computation was involved in the reruns as in
the initial run, significant computation expense was being
incurred. Therefore, we modified the LGPM to start from the last
solution (i.e., the last LGPM simplex tableau). This required
the addition of a dual simplex algorithm to supplement the
regular simplex algorithm, since the last solution becomes
infeasible under certain resource constraint changes. For a 110
project prioritization problem involving ten resource levels the
improved LGPM requires only 10-20% as many simplex iterations as
did the old LGPM.

2. THEORY OF IMPLEIIENTATION

The following discussion assumes some familiarity with the
fundamentals of linear programming and linear goal programming,
as might be found in Ignizio [1982]. We use the notation from
this source, largely, a-nd it tends to be standard in the linear
programming literature. We will use [] to denote matrices and
arrays, and (IT to denote the transpose of a matrix or vector.
The following abbreviations will be used:

IBFS - initial basic feasible solution 0

LGPM - linear goal programming model

LP - linear program

RHS - right hand side.
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In order td explain the general method for forcing a LGPM to

begin at a prescribed solution, it will be easiest to explain the

method for the simplest sort of LP. The generalization to the

more complex preemptive LGPM is straightforward. Therefore,

consider the following simple LP problem:

(1) Minimze z = Ecl x]T

s.t. [A] Ex]T a Eb]T

Ex3T >- COIT

Assume that this problem is such that ar IBFS can be found by

using simple slack variables. This corresponds to rewriting the

problem as:

(2) Minimize Z - Cc,O3[x,slT

s.t. CA,I Cx,si T = EbiT

Ex,&sT >= [O] T

In these last two formulations A is an m x n matrix, c and x are

1 x n matrices (vectors), a and b are both 1 x m matrices

(vectors), I is an m x m matrix, and 0 is either 1 x n or 1 x

(nm), as appropriate in context.

The LP problem is then solved using the simplex algorithm,

which begins by operating on the following initial extended

tableau, corresponding to using the slack variables as the

initial basis:
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ci's->I Cl C2 ... cn 0 0 0 1

CB I BV i X1 X2 ... Xn al 22 an XB

------------------------------------ ----------------------------

o 1 al I p 81. 012 ... a1.n 10 .. 0 bl

o 1 32 I 2,.1 a2,2 ... a2'n 0 1 .. 0 Ib2

0o SmI I am'1 amu2 ... aypn. 0 0 ... 1 bI I

Indicators->Izl-ci z2-c2 ... Zm-cm zne. Zn-2 .... Znq~m I z

The simplex algorithm then proceeds, with the status at any

particular iteration repreaented by anl extended tableau of the

general form:

cj'&-)I Ci C2 ... Cn 0 0 0

------------------------------------------------------------------
CB IBV(xB)I xl X2 ... xn al '2 am I X8

Ilabel, I I value

------------------------------------------------------------------

Cal I XBJ I Yl Y1,2 I .. Yi'n Yion.1 Yi~n-.2 ... Yipn., I xBj.

cB2 I xB2 I Y2sl Y2,2 ... Y2,n y2Pn.2. y2sn.2 ... y2pn~. I xB2

Cam I xBm I yjm,3 ym#~2 ... Ym'n Ym.'n-#i Ymon+2 *..Ympn+P I xBm

----------------------------------- -------------------------------

Indicators->l-ci 2-C2...Zm-Cm Zn~i zn+2 .... zn*m I Xa
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The reader will recall that at any point in time the yi,
e's

and xBi's may be expressed in terms of the a x m matrix [B]

defined as

E£I a E a('xBl) a(xB2) ............ a(xB*) 3

where a(xBJ) denotes the column in the initial tableau

corresponding to the basic variable now labeled xB3. The

important relationships actually involve the inverse of EB]:

Cxa]T = CB]-l~b]T

ryj3T = [B]-lra3]T

where Cb3 T in the initial ri'ht hand side (RHS).

Once these are computed, the indicator row- elements may be

computed as

z * rcB] xBjT

and

z = r cB Cyj]T.

Thus, given the basis (xBj, xB2, ... xBm), together with

CA], Eb3, and Cc] from the original probleqi, we can identify (B],

find its inverse, and then calculate all the elements of the

tableau needed to start the simplex procedure from that point.
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3. CONCLUSIONS

Several conclusions can now be drawn.

(1) Note that to construct B we only need the
identification of the basis variables, not their values.

(2) If any series of Gauss-Jordan operations leads from the
initial tableau to the tableau with basis xB, then in the final
tableau the important matrix [B] -' actually appears, viz., as the
array occupying the columns under the slack variables:

, lYl,n+l ... Yl,n+ml

[B]-l = I .. . I

I Ym,n+l .. Ym, n+m l

This observation is the key to efficient sensitivity analysis,
and is called "A Fundamental Insight" by Hillier and Lieberman
[19801.

(3) Recall from elementary linear algebra that the inverse
of [B] may be calculated by forming the rectangular matrix [BII ]
and conducting appropriate Gauss-Jordan operations until the
identity matrix appears on the left: [IID]. At that point the
square matrix on the right is D = [BI-

(4) The simplex procedure is simply a sequence of Gauss-
Jordan operations, guided by rules for selecting the pivot point.

(5) The yi,j's and xBi's computed using [B] - I in the
formulas above are identical to those that would be obtained
through a series of simplex operations yielding the same basis
vector.

Taken together, the above suggests a framework for a
simple and efficient technique to construct the simplex tableau
appropriate to the desired initial basis:

Employ the basic simplex algorithm, but override the normal
selection of pivot point (entering and exiting variables),
instead forcing the desired variables into the basis and
prohibiting their exit.
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DESIGN OF A FEELING-THINKING MACHINE

Ray Scanlon and Mark Johnson
Benet Laboratories

US Army Armament Research, Development, and Engineering Center
Watervliet, NY 12189-4050

ABSTRACT. A feeling-thinking machine has been designed using the mammalian
brain as a model and current psychobiology concepts as a guide. The machine has
been successfully run as a computer simulation. It mimics a primitive organism
with eight functional brain centers. They are the recticular ascending
substance (RAS), the amygdala, the cingulate gyrus, and medial forebrain bundle,
the hippocampus, thalamus, hypothalamus, and the neocortex.

I. INTRODUCTION. Machine intelligence for autonomous systems must be
capable of learning and especially thinking, if we are to go beyond the 'islands
of autonomy' presently envisioned for teleoperated and remotely piloted
vehicles. One approach is to use the mammalian brain as a model and investigate
the possibility of duplicating its functions in electronic circuitry. This
extension of neural network design is called non-living intelligence (NLI).

The brain consists of approximately 10**12 neurons intricately intercon-
nected. Only a small part of this circuitry has been unravelled. The NLI
effort at Benet Labs does not describe how the brain works, but involves elec-
tronic and computational experiments that provide insight into how the brain
might work. We pursue NLI through the design and construction of feeling-
thinking machines. Feeling is essential because without motivation, there is
nothing. The machine must want to do things. In doing things, it will learn;
and having learned, it will think. This report does not describe machines that
"exhibit intelligent behavior"; but rather machines that feel, want, and think.
The distant goal is to create a machine that thinks and acts like a man. This
report discusses the first of a series of feeling-thinking machine designs.

II. THE MODEL. Our approach to designing this machine is to simulate a
primitive organism which must survive within a contrived universe. We have
given it the name "Pacrat". Pacrat's brain has eight brain centers. The
electrical activity of these neural centers is not modeled, only the functional
relationships. From these interactions arises a sophisticated structure which
rests upon the anatomy of Pacrat's brain. The neural centers modeled are: the
reticular ascending substance (RAS), the thalamus, the hypothalamus, the
amygdala, the cingulate gyrus, the medial forebrain bundle, the hippocampus, and
the isocortex. (Gregory, 1975, pp. 688-689)

Individual neural response is not simulated, only the activity of assem-
blages of neurons called codons. A codon is the result or record of an
experience. It exists as the altered synapses between the neurons which consti-
tute the assemblage. (Palm, 1982, 1986)
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Pacrat, in diagrammatic form, is shown in figure 1. It shows that he has
been provided with the ability to get about in his universe through four motor
neurons. These are driven by the motor area of the isocortex as a final result
of sensory input, channeled to the isocortex under the control of the thalamus,
and filtered through the isocortex under the influence of the prevailing emo-
tion.

Hunger is the level of neural activity in an area of the hypothalamus which
we will call the hunger center. (Kissin, 1986, p. 15) The model assumes there
are sensory neurons lining the stomach wall that respond to expansions and
contractions of the stomach. These determine the level of activity of the
hunger center. As the stomach empties, the hunger center becomes more active:
as the stomach fills, it becomes less active.

Anger is also a level of neural activity in an area of the hypothalamus,
but in this case the cause is the activation of certain codons in the isocortex
as mediated through the amygdala. When this area is active, Pacrat experiences
some level of anger or frustration. The activity in the amygdala is quickly
inhibited by eating. (Flynn, et al., 1970) (LeDoux, 1986, p. 342)

Fear is the level of activity of the cingulate gyrus. This activity is,
subjectively, unease escalating to terror. In Pacrat, it is assumed that sen-
sory neurons excite the cingulate gyrus whenever his back is uncovered. This is
agoraphobia, the fear of open places.

Curiosity is the level of activity of the hippocampus. It is set off by
the activation of a codon in the isocortex which has not previously been
excited. The continual excitation of "old" codons will allow this activity to
fade away. Pacrat's hippocampus has efferents on his motor area with the result
that "newness" leads to exploratory rather than hunger or fear driven activity.

All sensory input (other than olfactory) is gated through the thalamus to
the isocortex. Thus the thalamus can relay or block this input. It can also
inhibit the motor output that would normally result from activity in the isocor-
tex. The thalamus does this in a rhythmic manner when the reticular ascending
substance (RAS) is stimulated. The RAS is excited whenever the hypothalamus or
the cingulate gyrus is active.

The thalamus extends this period of choking off sensory input when it
receives impulses from a codon through synapses which have been facilitated in
the past by the reward-punishment mechanism. This blocking of sensory input and
an associated inhibition of motor output is the function of the thalamic reticu-
lar complex. On the other hand, if a codon is activated which has a facilitated
synapse on the "goal" area of the thalamus (cf. akinetic mutism, Girvin, 1975),
sensory input is gated to the isocortex and the motor output is enabled.

The normal activity of the isocortex is association. During each "moment"
there is an active codon which has efferents on the motor output system. If
this system is not inhibited, motor output will follow. This codon fades out as
its store of strategic molecules becomes temporarily depleted. As it fades out
another codon starts up and the next "moment" begins. The new codon is deter-
mined by the sensory input (if not blocked), the previously excited codon, ard
the current dominant emotion.
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A reward-punishment mechanism is started up by the medial forebrain bundle
whenever activity in the hypothalamus or cingulate gyrus is reduced. The role
of this mechanism is to facilitate all recently fired synapses. (LeDoux, 1986)

III. THE IMPLEMENTATION. Pacrat exists in a contrived universe: a very
simple universe which is seen as partitioned by a rectangular grid (figure 2).
At each location in the grid one of Pacrat's sensory neurons, unique to that
location, becomes active. This gives him a location sense. At genesis he does
not know where one location is relative to another, but he does know that he is
where he is. He has also been given the ability to sense his own trail, and has
a general adversion to going where he has recently been. Again, the individual
activity of the sensory neurons is not simulated, only the relationship with
other active neurons. His burrow (or starting point) is always at row 11,
column 1. This is indicated by shading that cell. Pacrat's current location is
given by highlighting the cell he is in. (Walter, 1950, 1951)

One codon is active at any time and this represents a 'moment' in Pacrat's
life. This codon is excited by current sensory input to the isocortex plus the
previously excited codon and the prevailing emotion. The inputs are the loca-
tion sense, which is gated through the thalamus (figure 1), smell, and the
axonal bundles from the hypothalamus, and cingulate gyrus. A codon in the simu-
lation is simply a vector of scalars representing the current sensory input (if
any), normalized synaptic weights to the four motor neurons, associative connec-
tions to other codons, dominant emotion, and synaptic weights to the amygdala,
thalamus, and hippocampus. (Mishkin, et al., 1987)

Pacrat's motivation is hunger and fear. When awake, Pacrat is forced to
move by one or the other, or else he just goes to sleep as the RAS quiets down.
(Kissin, 1986, Chap 2). Initially this drive is hunger. In the simulation, the
distension of the stomach is represented by a scalar. This number continually
decreases unless Pacrat is at a food spot and is eating. When this number is
low enough, the hypothalamus responds (again a scalar) and the RAS is excited.
Pacrat wakes up. He is forced to explore his universe for food to satisfy
hunger. Food is placed randomly in one of three locations. The three potential
food spots are highlighted on the right side of the grid, with food located in
one of the cells. When he reaches a food spot, he eats, his stomach fills up,
and the activity in the hypothalamus is significantly reduced. This is simu-
lated by simply increasing the number corresponding to distension of the stomach
which is sensed by the neurons lining the stomach wall. These neurons have
efferents to the hypothalamus.

Pacrat can move north, south, east, and west within the boundaries of his
universe. Motor neurons drive Pacrat in one of these directions one cell at a
time. Each active codon in the isocortex has efferents on each of these motor
neurons and the relative effectiveness of these efferents determines the direc-
tion of travel. At the outset, i.e. trial 1, there is no preferred direction of
movement. The synaptic weights from any given codon to the motor neurons are
identical. Pacrat moves about his universe randomly until food is found. When
it is, a reward mechanism is activated through the medial forebrain bundle which
facilates all recently fired synapses. This is learning and will generate a
preferred direction of movement when similar codons are active in the future.
The vectors representing codons are changed so that elements corresponding to
synaptic connections between simultaneously active neurons are increased.
Facilitation is proportionally lower for codons active earlier in time.
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After hunger is satiated and the level of activity of the hypothalamus
reduced, fear is no longer masked by hunger. Fear keeps the activity of the RAS
high. An active cingulate gyrus drives Pacrat back to his burrow. Again, if
this is the first trial, there is no preferred direction, but the codons which
are activated are those associated with fear rather than hunger. The neurons in
the cingulate gyrus, not the hypothalamus, excite neurons in the isocortex.
When his burrow is reached, Pacrat's back is covered. The activity of the
cingulate gyrus is abruptly decreased. The reward mechanism is again activated
through the medial forebrain bundle and recently fired synapses are facilitated.
This will generate biased movement in the future if these codons are active.
Henceforth, at any cell in the grid, he will tend to go in a direction depending
on which neurons are active in the brain centers. An active hypothalamus may
move him east, an active cingulate gyrus with the same sensory input may drive
him north.

During epigenisis, Pacrat learns to survive. Randomness forces Pacrat out
of obsessive behavior patterns. Although a reward mechanism may increase synap- P
tic strength between a codon and a given motor neuron, there is always a chance
Pacrat will move in a different direction. A built in random element raises the
level of activity of motor neurons with a lower synaptic weight to the currently
active codon. An active hippocampus increases the effect of this random ele-
ment. If this were not present, Pacrat would not survive. Once food were
found, he would follow the same path again and again. However, as the synaptic
strength between a codon and motor neuron is increased, it becomes more and more
difficult for Pacrat to alter his behavior. He will continue searching for food
in locations where it does not exist. To resolve this we have given Pacrat an
amygdala. An active amygdala mediates anger. Excited neurons in the amygdala
.generate unique active codons in the isocortex. Figure 1 shows the role of the
amygdala in Pacrat. When the reward mechanism is active, all recently fired
synapses are facilitated through the medial forebrain bundle. These include
synapses from the active codon in the isortex to the amygdala. Therefore, if
this same codon is excited in future trials, the amygdala also becomes highly
active. This high level of activity excites a region in the hypothalamus asso-
ciated with anger or frustration. Unless there is a concurrent good experience,
such as eating, which will inhibit the amygdala; Pacrat will become angry. In
other words, he gets mad when food is not where it is supposed to be. This anger
quickly drives Pacrat out of the vicinity of a food spot by exciting different
codons in the isocortex. These codons do not have synaptic weights to the
motor area that favor any given direction. He is effectively 'bounced' randomly
to neighboring locations in the grid. Without the amygdala, Pacrat would keep
looking for food in the same spot almost indefinitely. The level of activity in
the hypothalamus is far greater than that of the hippocampus. When he is
starving, he doesn't get bored.

The effect of the rhythmic action of the thalamus is that a moment (active
codon n) that generates motor output is followed by several moments (active
codons n+1, n+2,...) with motor output inhibited. This is the first of three
forms that thinking takes. The sensory input is temporarily blocked, motor out-
put inhibited, and associated codons in the isocortex are turned on. This form
of thinking is implemented in Pacrat as he effectively evaluates the consequen-
ces of his last move.

386

.C~y .. ,X



A second form of thinking comes about when an excited thalamus results in
an extended period of blocking of sensory input. Again, the normal state in the
isocortex is association so codons continue to fade in and out. If the chain of
associating codons reaches a codon with inhibitory efferents on the thalamus,
activity of neurons in the reticular complex is reduced. The blocking cycle of
sensory input is reduced to a minimum and Pacrat proceeds to move with intent.
This form of thinking is recognition. It is initiated when Pacrat moves to an
area of particular interest to him on the grid. This a location where synapses
from the isocortex to the thalamus have been facilitated from previous rewards.

A third form of thinking comes about when the extended period of blocked
sensory input and inhibited motor output results in slightly different asso-
ciated codon chains. This can occur because of the inherent randomness of
neural actions. If one of these chains results in activating a codon quicker
than recent paths have done, the neurons of this codon are in a different state
of molecular depletion. It has had less time to recover from the last activa-
tion. It comes on with a burble which is transmitted to the reward system, and
recently fired synapses are facilitated. This is insight and is the basic mecha-
nism of rational thought. Pacrat has demonstrated this by "thinking" of more
efficient paths to food.

IV. TRIAL RUN. Figure 3 shows four static displays of a typical trial run
of the simulation. Figures 3a - 3d are snapshots in trial 702. The activity of
the brain centers is given by a bar chart on the left side of the display. The
larger the bar, the more active that area of the brain. Even number trials
(i.e., 702) display the effect of a particular neural center (i.e., hunger,
anger) while odd number trials (i.e., 703) give the name of the center. The
number of steps indicate the sequence of each snapshot in the trial.

In figure 3a Pacrat has just left his burrow, the starting point. The acti-
vity of the hypothalamus was high enough to activate the RAS and wake him up.
Figures 3a-c show Pacrat driven by hunger. Through epigenisis, which is his
previous 701 trials, he has learned. Figure 3b shows Pacrat with his motor out-
put inhibited by the thalamus. This is shown by freezing him at his current
location and dynamically displaying his codon association chain. The reward
cell for this trial is in the middle of the three possible food locations (row
11, column 18). From past experience, food has been known to be located in the
last reward cell (row 19, column 18). Pacrats codon chain eventually associates
to this location and facilitated synapses from the isocortex stop the thalamus
from blocking sensory input and inhibiting the motor area. His motor output is
no longer inhibited. Figure 3c shows the active amygdala when food is not found
where it was expected.

His frustration forces him out of the vicinity of the empty food cell and
eventually he locates the food. Figure 3d shows Pacrat moving with intent back
to his burrow, driven by fear. The activity in the thalamus (thinking) indica-
tes it has been inhibited from blocking sensory input and from inhibiting motor
output. This is a result of recognition resulting in strong inhibitory input
from the isocortex.
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V. IMPLEMENTING PACRAT AS A NEURAL NET. A simplified version of Pacrat
has been implemented using only simulated neurons, formal definitions of neural
activity, and synaptic facilitation. Neural activity is modeled using PIO
(proportional-integral-differential) control. The governing equations for cell
activity and synaptic facilitation are given in figure 4. Synaptic facilitation
has both a Hebbian (associative) and a non-Hebbian (reward-punishment) com-
ponent. A selectable resting frequency and codon saturation frequency were
included to help with governance of the network.

This simulation is called Mouse. Figure 5 gives a static display at one
point in the simulation. The shaded circles on the left represent neurons.
Mouse, like Pacrat, lives in a bounded universe. This universe is the ten by
ten grid on the right. At each cell in the grid, a single sensory neuron
becomes active. The color of the circles reflect the activity. The color
changes gradually from blue to red to white as the activity increases. Since
color is not reproduced in this report, the active neurons are circled. Each
sensory neuron has excitatory efferents on each of four motor neurons. These
motor neurons are labelled N (north), S (south), E (east), and W (west). When
the activity of one of these motor neurons exceeds a preset threshhold, Mouse
moves one cell in that direction (within the boundaries) and a different sensory
neuron becomes excited. As in Pacrat, there are three potential reward cells.
At the beginning of each trial, food is placed randomly in one of these cells.
These cells are the three shaded cells in column 9 as shown in figure 5. The
dark cell gives the location of the reward cell for that trial. When Mouse
reaches a cell where food is located, a reward mechanism is activated and
recently fired synapses are facilitated. The normalized synaptic weights from
the sensory neurons to the motor neurons are shown by the arrows in the grid.
There is always an element of randomness associated with each move, but the
larger the arrow the more likely Mouse will move in that direction. Initially,
(i.e., trial one) Mouse has no preferred direction of movement and the arrows
have zero length and direction. Figure 5 gives the normalized weights after
1000 trials. Mouse always starts at row 6, column 1 and his current location in
the grid is highlighted. In order to avoid obsessive, compulsive behavior Mouse
has been given a sense of smell. He is designed to avoid his own trail. This
is accomplished via four sensory neurons with inhibitory efferents on the motor
neurons. These are labeled 1/N, l/E, 1/S, and 1/W indicating their effect on
that direction of travel. The necessity for these is evident if one imagines
four arrows in the grid forming a loop.

Figure 5 shows Mouse after a single move. He has just moved north so there
is a high level of neural activity in the neuron inhibiting motor neuron S
(south). Since this is the lOOOth trial, Mouse has a preferred direction of
movement. At this location, as shown by the arrow, it is east. The large synap-
tic weighting from the currently active sensory neuron to motor neuron E (east)
is raising the activity of this motor neuron more than the others. It is there-
fore likely that Mouse will move east.

VI. CONCLUSIONS. A brassboarded feeling-thinking machine is possible. We
believe it is not practical at the moment to consider casting everything in
silicon, therefore the neural network section of the machine will be emulated in
a highly parallel computer ensemble.
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VII. ONGOING EFFORTS. The Pacrat simulation is being completely rewritten
so that the neurons are explicitly modeled. This is preparatory to moving the
simulation to a transputer network running under an Occam harness.
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CELL ACTIVITY (PID)

1=postsynaptic , j = presynaptic

Xj= Ai B (Ki - Xi)dt + CX +D*XI + E*R]+

XI = XI + F*(IXJWij - Xi)

X = cell activity

K= resting frequency

Wj= synaptic weight

A,B,C,D,E,F = empirical constants

R =rectangular distribution on (0.0,1.0)

SYNAPTIC FACILITATION

=i -AWij + B*H(Xi,Xj) +r(R,P)*a* f H(Xijd

a = Ca + O*H(XiXj)

r(R,P) = E*R + F*P

H(Xi,Xj) = (Xi-Ki] (Xj-Kj)

A,BC,D,E,F = empirical constants

Kj= resting frequencies

R = instantaneous reward level

P = instantaneous punishment level

R = P = 0 or E = F = 0 => Hebbian

Figure 4. Cell Activity and Synaptic Facilitation.
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POLYNOMINAL DEFINITION OF DISCRETE FIELD
POINT OF MAP OF DIFFUSION EQUATION

William F. Donovan
Mechanics and Structures Branch

Interior Ballistics Division
Ballistics Research Laboratory

Aberdeen Proving Ground, MD 21005

ABSTRACT

aT a2T
The one dimensional diffusion equation, at a 2 2 is given finite

difference expression, transformed to geometric and then algebraic context,

and then by differencing, recomposed into general proposition. Discrete

terms of the algebraic transpositon take the terminating polynominal form

T (NIP) - 2---2 - CA-Bin + Cm2  *... * mk )T NP)- 2h 2j

where the coefficients A,B,C etc., which turn out to be rational expressions,

are analyzed by differencing methods. The systematic reduction to a base-line

source reveals a general behavior pattern re-expressed in compressed tables,
from which the algebraic form of any (N,P) term can be recomposed.
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INTRODUCTION

The diffusion equation of Physics has been used to analyze unsteady heat
transfer, boundary layer velocity distribution, long line electrical voltage
fluctuation and salt-solute penetration. The general mathematical expression

is 3T/Ot = a 2 T/X 2 where particular physical constraints determine the
context. There are two approaches to the problem statement and solution; the
one most widely used being transformation, and the other, following finite
differences, employes variations of summing averages of term values
established by unique methods. This report considers an averaging type
solution in algebraic format. The final result consists of a series of
discrete polynomials with rational coefficients which describe the dependent
variable state at each time-distance coordinate in the manner of the non-
reflecting Schmidt plot.

PROCEDURE

Essentially, the differential equation is given finite difference
expression which is transposed first to geometric and then to polynomial
algebraic form. The polynomials, representing discrete solutions to the
differential equation, are analyzed by differencing techniques whereby the
numerical coefficients of common diagonal terms are found to be expressible in
a generalized matrix.

From the one dimensional partial differential equation

aT = aT ()-- a-

at 2a

where T is the dependent variable

t is the independent variable

; is the independent variable

and a is a constant.

Heat transfer language makes

T temperature,

t =time

x distance,

and a = diffusivity.

Application of the finite difference procedure gives

A T A 2Tt = (2)
a At AX2
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with At the finite difference in time,

AX the finite difference in distance,

A tT the time variable effecting a change in T,

and A T the distance variable effecting a change in T.
X

By expansion the equation becomes

T(t+1) Tt t t
nn) n (n-1) n (n+1],At AXL

where subscript n refeis to the x increments and superscript t refers to the
t increments. Schmidt developed the graphical form shown on Figure 1 with
the stepwise linear temperature gradients across adjacent layers of material.
Since the change in internal energy within a layer of material over a finite
time is the difference between the heat flow in and heat flow out, the 2
corresponding temperature increment becomes a function of the ratio AX
and it is convenient to select this ratio as unity. 2aAt

Whereby:

At "- (4)2a

Also, a geometric simplification results from defining the graphical
proportions as

m a A) °  
(5)

Table I shows the discrete algebraic expressions for the time-temperature -

distance intersections of Figure 1. Along the diagonals of Table I a matched
power polynomial appears and the coordinate expression for T in time and
distance takes the general form

U,

T (N,P) =  # (A-B + Cm2 . 4k (6)

2h 2m

where N is a distance index

P is a time index

See George P. Sutton, Rocket Propulsion Eiements, John Wiley & Sons, New

York 1956.
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(P +N) -2 - Isin (P +N) ir/2
S2- the external denominator

exponent,

k is the terminal exponent of m

j - (k - term exponent of m), the individual term denominator exponent,

and * - m (To-Tlo) with A,B, C .... numerical coefficients of the interior
terms of the equation.

To establish T (N, P) for any p and m (which include the physical constraints)
it is necessary to establish the precise values of the coefficients A, B, C
.... ; and this is the object of the current investigation.

Any fujl expression, T (N,P), can be developed from a Gregory-Newton
formulation of the separate terms A, B, C, for the bounded diffusion equation
as shown in Figure 2. Some interesting progressions do result but an alternate
and more geometric presentation is available from the direct finite difference
tables.

Table 2 is also extracted, by difference equation procedure, from Table 1
and generates the coefficients of the constant term, A, for the coordinate
expression of distance and time. The starting point is within the heavy box of
column 7. These numbers, 17548, 25147, 35401, 49024 and 66868, were found by
direct calculation using Figure 1 and Table 1 and are the constant numerator

terms only. Table 3 lists the complete polynomial expressions for these
coordinates. By the usual differencing, the 7th through the 1st columns are
established. It is then possible to work vertically using the regression in
column 2, back to zero; and then to complete the elements of columns i through
6. Noting the resulting bias progression at the tops of these columns, the next
step is continue diagonally (I, II, III) to column 8 and, using column 7 as a
summation, verify the vertical sequence of column 8. Columns 9, 10, 11, etc.,
are generated similarly.

Within the individual frames containing the coefficients is a paranthecized
pair of numbers which indicate the distance and time coordinate. These indices

run diagonally upwards at constant distance and bi-sequentially as time. Tables
4 through 9 are formed by the same procedure and extend arbitrarily to the 6th
power of m. However, a different sequence appears along diagonals I, II and III
according to the power of m. Table 10 summarizes this behavior and reveals yet
another correlation, shown mainly by column 4, from which the adjacent columns
can be constructed ad-infinitum. The final coincidence occurs from a re-
inspection of Tables 2, 4-9 where the digital vertical counting column (1, 2, 3,
4, 5 .... ) conjoins the power of m and the time sequence of the first distance
diagonal (1,3), (1,5), (1,7), etc., by an interval of 3 in the counter according
to Table 11.

(2) M.R. Spiegel, Theory and Problems of Finite Differences and Finite
Difference Equations, Schaum's Outline Series in Mathematics, McGraw-Hill Book

Company, New York, etc., 1971, p.p. 36-44.
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RESULTS

To write any term defining the dependent variable in time and distance,

Tables 2 through 11 are used to form the numerical coefficients in Equation (6)

T (N,P) - [ A - Bm + Cm 2 -+ M ik]

For T (1,15) for instance

N 1

P 15

k P - N - sin (P - N) 1 /2 = (15 - 1) - I sin 7 iT =7
2 2

h P + N - 2Isin (P + N) n/21_ (15 + 1) - 2 - Isin 8 TTi =
2 2

j = (k - term exponent of m) = (7 - term exponent of m)

The finite difference tables for the (1,15), j variables are then
reconstructed (Tables 2, 4 -9) using Tables 10 and 11 and the respective

numerators determined.

Whereby

Term Numerator Exponent
Value of "im"

A 51480 0 7
B 39796 1 6

C 20264 2 5
D 7050 3 4

E 1672 4 3

F 260 5 2
G 24 6 1

H 1 7 0

and

r2 3 4
T , 51480 39796m 20264m 7050m 1672m

T(1,15) =128 128 64 + 32 - 16- + 8

260m5 + 24m - 7
9 4 2J
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TABLE 1. Time Location

_________ P

1 23 4 5 b

1 0 0 (0/2)(3 - m) (0/2)(3 - m) (0/41(30/4 - 9/2 m + m ) (0/4)(30/4 - 9/2 m - rn.

2 0/2 0/2 (0/4)(7/2 - m) (0/4;(7/2 - m) (0/8;(38/4 - 10/2 m - m.

3 0/4 0/4 (0/8;(4 - m) (0/8)(4 - m)

4 0/8 0/8 (0/16,(9/2 -m'

5 0/16 0/16

6 0/32

7

8
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TABLE 1. (continued)

7 8

(0/8)(35/2 - 29/2 m + 12/2 m 2  m 3 (0/8)135/2 - 29/2 m + m 2 3 2 9 08)3/ 2/ m

(0/8)(35/4 - 10/2 m + m 2) (0/16)k187/8 - 69/4 m + 13/2 m - m 3
9 7

(0/16)(47/4 - 11/2 m + m2) (0/16)>47/4 - 11/2 m + m-

(0/16)(9/2 - m) (0/32>'57/4 - 12/2 m + m 2

(0/32)(5 - m) (0/32'k5 - m)

0/32 (0/64'11/2 - m)

0/64 0/64

0/128

402
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TABLE 1. (continued)

9

(0/16)(630/16 - 325/8 Im +~ 95/4 IM2- 15/2 Im3+ in4 )

(0/16)(187/8 - 69/4 mn +~ 13/2 In 2 _- i 3 )

(0/32)(244/8 - 81/'4 In + 14/2 mn2 - in3 )

(0/32)(57/4 - 12/2 In + I 2)

(0/64)(68/4 - 13/2 In + In2 )

(0/64)(11/2 - m)

(0/128)(6 - i)

0/128

0/256
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TABLE 1. (continued)

10

(0/16)(630/16 - 325/8 m + 95/4 m2 15/2 m. in m4
)

(0/32/'(874/16 - 406/'8 in + 109/4 m- 10/2 m 3 + in4 )

(0/32)(244/8 - 81/4 in + 14/2 m- m3

(0/64)(312/8 - 94/4 mn + 15/2 m 2 n _ )

(0/64168/4 - 13/2 in m in)

(0/128)(80/'4 - 14/'2 m + in2

(0/128)(6 - in)

(0/256)(13/2 m i)

0/'256

0/512
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TABLE 1. (continued)

(0/32)(1386/16 - 843/8 m + 312/4 m 2  141/4 m3 + 18/2 m M 5.

2 _ 62m3 4,
(0/32)(874/16 - 406/8 m + 109/4 m - 16/2 m + m )

(0/64)(1186/16 - 500/8 m + 124/4 m- 17/2 m3 + m 4

(0/64)(312/8 - 94/4 m + 15/2 m2 - m3 )

(0/128)(392/8 - 298/4 m + 16/2 m - m3

(0/128)(60/4 - 14/2 m + m2) 

2,(0/256)(93/4 - 15/2 m + m2

(0/256)(13/2 -m)

(0/512)(14/2 -

0/512

0/1024

-1~
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TABLE 1. (continued)

12

(0/32)(1386/16 - 843/8 m + 312/4 m2  141/4 m3 + 18/2 m 5
2 3 48/ 5,,

(0/64)(1979/16 - 1093/8 m + 374/4 m- 79/2 m + 19/2 m- m

(0/64)(1186/16 - 500/8 m + 124/4 m2  17/2 m+ m4 )

(0/128)(1578/16 - 608/8 m + 140/4 m2 - 18/2 m3 + m4 )

(0/128)(392/8 - 298/4 m + 16/2 m- m3 )

(0/256)(485/8 - 123/4 m + 17/2 m2 - m3 )

(0/256)(93/4 - 15/2 m + m2 )

(0/512)(214/8 - 16/2 m + m2 )

(0/512"(14, 2 m

(0/1024')(15/2 - m'

0/1024

0/2048

406
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TABLE 1. (continued)

13

(0/64)(3003/16 - 4165/16 m + 1841/8 m
2 - 532/4 - 196/4 m4 + 21/2 m5  6)

23 4 5,
(0/64)(1979/16 - 1093/8 m + 374/4 m2  79/2 m + 19/2 m 5 )

(0/128)(2762/16 - 1397/8 m + 444/4 m
2

- 88/2 m3 + 20/2 m 4 m5

(0/128)(1578/16 -608/8 m + 140/4 m2  18/2 m+

(0/256)(2063/16 - 731/8 m + 157/4 m2 
- 19/2 r3 + m

(0/256)(485/8 - 123/4 m + 17/2 m
2 - m3)

(0/512)(592/8 - 139/4 m + 17/2 m 
2 - m3)

(0/512)(214/8 -16/2 m + m
2 )

(0/10241244/8 - 17/2 m + m
2

(0/1024'115/2 - m)

(0/2048,'16/2 - m)

0/2048

0/4096

407



TABLE 1. (continued)

14

(0/64)(3003/16 -4165/16 m + 1841/8 m- 532,'4 m 3+ 196/4 m 4 21/2 m 5+ m6

23 4 5 6,
(0/128)(4387/16 -5562/16 m + 2285/8 m~ _ 310/2 m +- 216/4 m -22/2 m + m

(0/128)(2786/16 -2794/16 m + 444/4 m 2- 88/2 m 3 + 20/2 m 4- m5)

(0/256)(7599/32 -3525/16 m + 1045/8 m 2- 195,4 m 3+ 21/2 m 4 m5

(0/256)(2063/16 -731/8 m + 157/4 m 2 _ 19/2 rn 3 + mn4 )

(0/512)(2655/16 -870/8 m + 175/4 mn2 _ 20/2 mn3 + m4

(0/512)(592/8 -139/4 in + 18/2 mn2  m i 3 )

(0/1024)(714/8 -156/4 m +19/2 mn2 - i 3 )

'01/1024',244/8 -17/2 m + in2

2
(0/2048)'276/8 -18/2 in + in

(0/2048)(16/'2 - m)

(0/4096>1i7/2 - in)

0/4096

* 0/8192

440
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TABLE 1. (continued)

15

(0/128)(6435/16 - 9949/16 In + 5066/8 m 2 
-3525/8 In 3+ 836/4 mn 4- 130/2 m * 24/2 m 6 m7

(0/128)(4387/16 - 5562/16 In + 2285/8 In 2 310/2 In 3 + 216/4 m 4 -22/2 In 5 + IMn

(0/256)(25147/64 - 14649/32 mn + 5615/16 mn2 _ 1485/8 mn3 +i 237/4 m- 23/2 m 5 + in6 )

(0/256)(7599/32 - 3525/16 mn + 1045/8 In 2 195/4 min + 21/2 In 4- in5

(0/512)(10254/32 - 4395/16 in + 1220/8 mn2 -215/4 m 3 + 22/2 m 4  m in5

(0/512)(2655/16 - 873/8 In + 175/4 mn2 _ 20/2 mn 3~ in )

(0/1024)(3369/16 - 513/4 in + 97/2 mn2 _ 21/2 mn3 + in4 )

(0/1024)(714/8 - 156/4 In + 19/2 m 2 _- i 3 )

(0/2048)(852/8 - 174/4 mn + 20/2 mn2 - i 3 )

(0/2048)(138/4 - 18/2 mn + In2 )

(0/4096)(155/4 - 19/2 in + In 2

(0/4096)(17/2 - mn)

(0/8192)(18/2 - mn)

0/8192

0/16384

409
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TABLE 1. (continued)

16

(0/128)(6435/16 - 9949/16 mn + 5066/8 m- 3525/8a m 3 + 836/4 m- 130/2 m 5 + 24/2 m 6 in
7

)

(0/256)(76627/128 - 4M97/64 m + 25879/32 m 2 _ 8485/16 m 3 1090/8 m- 283/4 m5+ 23/2m 6 -

(,0/512)(35401/64 - 9502/16 m +~ 6835/16 mn2 - 825/4 m 3 + 259/4 m- 24/2 mn5 +- i
6

)

(0/512)(10254/32 - 4395/16 m + 1220/8 m 2 _ 215/'4 m 3 +. 22/2 m- i 5 )

(0/1024)(13623/32 - 5421/16 in +i 1414/8 m2 _ 236/4 m 3 +- 23/8 in 4 in )

(0/1024)(3369/16 - 513/4 mn +e 97/2 m2 21/3 m 3 + m 4 )

(0/2048)(4221/16 - 600/4 mn + 107/2 mn2 -22/2 m 3 inm4 )

(0/2048)(852/8 - 174/4 in + 20/2 mn2  m i 3 )

(0/4096)(1007/8 - 193/4 in + 21/2 mn2  m i 3)

(0/4096)(155/4 - 19/2 mn +m2

(0/8192)(173/4 - 20/2 mn + in 2

(0/8192)(18/2 m i)

(0/16384)(19/2 m i)

0/16384

0/32768

410
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TABLE 2. Constant Term Numerators

"i"EXPONENT 0

16

6 1 0_

_ 6 _5

12 5 _

111 _ 5 4

1 101_ 4 10 1

1_ 9 14 3

8 3 0
7 3 2

-61 12 0
5 2 1

4 1 0
3 1 1

7 2 0

12 3 0 1

201 4

12 1 1 -
32 151

17 1
49 1,3)

30

102L (3,5)%

(1,7) (4,6)

47 ___
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TABLE 4. ist Power Numerators

"n" EXPONENT 1

15

15 0 1
15 10

10 0
10 6

_ 6 1 0

6 3
3 3 0 1

61 1 1 0

6 1
161 3 0

9 1
251 4 0

1 1
18__1_ _

1 241 117

39 g
9(1,51 "

48

(2,6)

'97954' -
', (4,18) ,  .8. * 97954

414
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TABLE 5. 2nd Power Numerators

"n" EXPONENT 2

0 n

20

20 110

40 1 1 1 0 _

30 10 1 0
20 4 0

141 4 1

8 1 0
5! 1

2 _0

I 1 1
- 3 0

I1 10-
0 1

409C

,~- .C • 40963
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TABLE 6. 3rd Power Numerators

"in" EXPONENT 3

0 11r

301

30 10

301 15
60 1151 0 1

451 115 5 1
301 5 0 _

1 751 120 5 1
501 10, 1 0

16 12 1 0

181 1

35 14 1 0
15 1

5 0

201 111

(2,10) 0

906 17T
1(311) 1

s(2.12)

*12021

416
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TABLE 7. 4th Power Numerators

"M" EXPONENT= 4

01
211

21 1 0__

21 6

42 6 0
27 6 1

12 1 0

19 2 0
I

(2 12

--'3 10
17

18
(2,12)

196
(1,13)

20

124 5 0  2450

(4,18'

417



TABLE 8. 5th Power Numerators

"i" EXPONENT 5

01

28 _1 7

0

2 0

2011

(2.14)1
260

(13A5)

* TSj32
S. _ (4?. 1..F 3a52

418
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TABLE 9. 6th Power Numerators

in" EXPONENT 6

01
361

361 0

136 8 , _.

8 10

_ 8 _ 1

16 1 0

25 2 0
11 1 1

361 3 101

14 1

308

(2.16)
333 ,

(3,171--

(4,1 8)l .'G - 27

419
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0 6 (1, 3) 

, c 
' 

( 1,;) 

2 12 ( 1, 7) 
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LIST OF SYMBOLS

a constant (diffusivity)

h exponent of 2 in the external denominator

j exponent of 2 in each term denominator

k exponent of "m" in final term

M constant (-/A &---- )

n number of X increments

t independent variable (time)

t independent variable (distance)

A,B,C,... numerical coefficients

N distance index

P time index

T Dependent variable (temperature)

a indicating partial differentrative

a indicating difference

L tT time variable effecting a change in T

L T distance variable effecting a change in T

(P external numerator
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The Numerical Simulation of Richtmyer-Meshkov Unstable
Interfaces: A Conference Report

John Grove I

Courant Institute of Mathematical Sciences
New York University

New York, New York 10012

ABSTRACT

rhis paper investigates the interaction between a planar shock wave and
a perturbed contact discontinuity. The interaction is simulated by a front
:racking method that uses a local steady state analysis to model the diffraction
patterns produced by the collision This front tracking method automaticaily
adjusts the topology of the tracked interface to account for the wave interac-
tions. The acceleration of the contact discontinuity by the shock wave excites
unstable modes in the gas.interface that generate Richtmyer-Meshkov insta-
bilities.

The following is an shortened version of a paper submitted to the SIAM
Journal on Applied Mathematics.

1. Introduction

The numerical simulation of a collision between a planar shock wave and a contact
discontinuity surface is discussed in this paper. An important feature of this method of simu-
lation is the use of a front tracking algorithm that handles bifurcations of tracked waves.
Front tracking sharply resolves the diffracted wave patterns that are produced as the two
waves collide. It also gives a detailed picture of the growth of surface instabilities in the gas
interface.

The initial small amplitude linear analysis of the shock-contact interaction is due to
Richtmyer [11, and experimental confirmation was provided by Meshkov, et al. [2]. Thus
this interaction is usually referred as the Richtmyer-Meshkov instability.

Recent calculations by D. L. Youngs [31 give a detailed view of this instability, including
the large amplitude, late time regime. Eulerian methods are used because the extreme degree
of interface complexity would lead to excessive mesh distortion in Lagrangian codes. How-
ever Eulerian codes tend to suffer from numerical diffusion, that degrades the interface.
Youngs uses a volume in cell Eulerian method (4-71 with the monotonic advection method of
Van Leer [8,91 to enhance the interface resolution and to minimize the numerical diffusion.

There are two principle m'ethodological differences between the computations of
Youngs and the ones presented in this paper. The first is the use of the front tracking algo-
-ithm for an exact resolution of the interface, and the resulting absence of numerical diffu-
,ion across the interface. In [41, Youngs states, "A possible way of tracking interfaces would
le to define each interface by a set of Lagrangian marker particles. However, this method
becomes logically complicated if the interfaces become highly distorted or the the geometry is
complex." It is believed that the front tracking method used here shows that this problem has

Supported in part by the Army Research Office. grant DAAG29-84-K-0130.
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been solved for interfaces with a considerable degree of complexity. The second principal
,netnodological difference is the use by Youngs of the monotonic advection method of Van
Leer. rhe front tracking algorithm at present uses a second-order Lax-Wendroff method for
the solution away from the tracked interface. However there is no inherent incompatibility
between the method of front tracking and such second-order Godunov methods as the Van
Leer scheme or the PPM method of Colella and Woodward (101, indeed upgrades of the
front tracking algorithm are planned that will include such methods.

The shock-contact interaction modeled here is the original problem of Richtmyer [11, in
which a shock wave collides an interface between two gases. Youngs on the other hand
m-odels the shock tube experiment of Meshkov et al. [21 in which a shock originally incident
;n the heavier gas collides with the contact discontinuity interface, is reflected by a rigid wall,
ind the reflected shock again interacts with the interface. These problems are closely related
ind close qualitative similarities between the results obtained here and those of Young's are
observed. with the expected difference of an absence of numerical diffusion in the front
--acking method. A detailed comparison has not been attempted at this point. A second
difference is that in the published results of this paper the parameter ranges include strong

.ncident shocks with pressure ratios across the shocks up to = 1000 and shock Mach

numbers up to 28. The most nearly comparable of the figures in the two papers is perhaps
figure 4.4(e) of this paper and figure 9 frame 3 of (3]. The mesh used in the front tracking
run is about 4.4 times as coarse, per mode, in the direction parallel to the interface as is that
of Youngs. In spite of the coarser grid, the results show a considerably finer level of detail
at the interface. This is not surprising, since the front tracking algorithm concentrates
numerical power at the interface. The resolution of the solution in the untracked portion of
the computational region will of course reflect the relative coarseness of the grid.

The number and types of the unstable modes that are observed in a shock wave and
contact discontinuity interaction depend on the incident shock strength, the initial geometry
of the two waves and the physical properties of the gases. A single mode can be isolated
when the incident shock wave is planar and the contact discontinuity surface has the shape of
a sine curve of a single period. More complicated initial geometries for the initial gas inter-
face can be used to study the interaction between different unstable modes.

2. The Front Tracking Algorithm

The front tracking algorithm [!i.141, is an adaptive grid method for the sharp resolu-
tion of selected waves in numerical solutions to systems of partial differential equations in
two space dimensions:

W,- 7V.F(w) = 0. (2.1)

Usually these waves represent discontinuities in the solution function, for example, shock
waves or contact discontinuities. The selected waves are tracked by superimposing a set of
one-dimensional curves onto an underlying eectangular grid. These curves correspond to the
locat'on of the tracked waves at a given time and are dynamically modified as the solution
evolves in time.

Some terminology will be helpful. The basic data structures are points, bonds, curves.
nodes and interfaces, see (111. A point describes a location in space and a bond contains the
information needed to describe an oriented linear segment connecting two points. A curve is
in ordered set of bonds, and thus corresponds to a piecewise linear ordered curve in space.
All curves are assumed to be continuous. The start and end points of a curve are called
nodes. Several curves may meet at the same node. An interface is a collection of curves and
nodes.

Values for the state variables that describe a solution to system (2.1) are associated with
geometric points on a rectangular grid. In addition, since the tracked curves represent
discontinuities in the solution function, two sets of state values are associated with each point
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att a curve. These correspond to the value of the solution on either side of the curve at the
particular point. States are also associated with the start and end of each curve. These states
correspond to the tangential limits of the solution as the end point of the curve is approached
along the curve. The solution in a neighborhood of a node is described by the start or end
states of the curves going into that node.

The propagation of the solution from time t to time t - At is divided into two -iain
parts, the propagation of the tracked wave structures (the front propagation), and the updat-
ing of the values of the states at locations away from the tracked interface (the interior pro-
pagation). The simulations described in this paper used an operator split Lax-Wendroff
-nethod for the interior propagation. This finite difference method has been modified to use
the states on the tracked interface as boundary data.

At each non-node point P on the tracked interface a one dimensional Riemann problem
!s solved for the component of system (2.1) normal the curve through P. The solution to this
Riemann problem gives the wave speed and a set of updated states at P. Later a second
iweep over the points is performed in which the contribution of the tangential component of
:he equations is included. See [13] for a description of the details of these steps. The nodes
are treated separately from the non-node points on the interface, since the solution is fully
:wo dimensional at such points and operator splitting does not apply. The states near a node
and the tangents of the curves joining the node define a two dimensional Riemann problem
,15], and the solution of this Riemann problem is taken as the first order solution near the
node. Sometimes it is also possible to compute higher order corrections to the states near a
node that include such effects as the curvature of the incoming waves and the variability of
the solution near the node.

Often an explicit expression for the solution to a given two-dimensional Riemann prob-
lem is unavailable. In such cases the solution to the two-dimensional Riemann problem is
approximated by finding a projection of the exact solution onto a subclass of functions that
will capture the main features of the interaction. The next section will discuss such a projec-
tion for a node that corresponds to a shock-contact collision.

A more detailed description of the propagation of the tracked interface for one time

step can be found in [161.

3. The Tracking of Shock-Contact Interactions

The direct simulation of the Richtmyer-Meshkov instability is based on a numerical
solution to the Euler equations for a non-viscous, non-heat conducting gas.
(Conservation of mass)

P, - (pu), - (pv), = 0, (3.1a)

(Conservation of momentum)

(pu), -t- (pu 2 - p) - (puv), = 0, f3.1b)

kpv), - (puv). - (pv- - p)). = 0, 3.1c)

(Conservation of energy)

1 ql4 z e]J -pu[1~q2 -~ il pvl - i 0. (3. ld)

fhe variables u and v are the x and v components of the gas velocity at the point (x, y),

42 = u2 - v-. The thermodynamic variables p, e, p and i = e - -- are respectively the den-
Sb. P '9.

sity. specific internal energy, pressure and specific enthalpy of the gas. The thermodynamic
variables for each gas are related by a caloric equation of state

e = e(T. S), (3.2)

where e(T, S) is a convex function of the specific volume T = and specific entropy S. In
P
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general this eauation of state will be different for the two gases on opposite sides of the gas

interiace.

[he pressure p is given by p(Tr, S) - _ Often this relation can be inverted to give

:he entropy and hence the energy as a function of p and p. This expression, called an incom-
piete equation of state, is usually sufficient to solve the Euler equations. The numerical
examples described below used a polytropic equation of state,

e p T (3.3)
- - i)'

where the ratio between the specific heats y is a constant satisfying 1<-y--. The author

and his colleagues are actively pursuing hydrodynamic simulations with more general equa-
tions of state. Thus, the equation of state dependencies in our code have been modularized
:o allow the optional use of other equation of state models. This modularity requires that all
aydrodynamic quantities be interpreted in terms that can be expressed for a general equation
,f state. In particular, this involves such requirements as an equation of state independent
formulation tor the solution of one dimensional Riemann problems. and equation of state
rndependent expressions for the shock polars described below, see (161.

The Richtmyer-Meshkov instability simulation is initialized at a time shortly before the
ncident shock wave reaches the gas interface. Fhe incident shock is taken to be planar, and

the contact discontinuity interface is given an initial geometry specified by input. If a single
mode is to be isolated this initial geometry is that of a sine wave o a single period across the
comvutational domain. The gas interface is assumed to be at rest with respect to the gas
ahead of the incident shock, so the initial data is piecewise constant.

Since the two interacting waves are tracked, it is necessary to resolve the diffracted
wave patterns that are produced at the point of collision between the two waves. In the
iimulation used here, these diffraction patterns are resolved using shock polar analysis.
Briefly, the interacting waves are approximated by their tangents near the point of collision
between the incident shock wave and the gas interface, and the nearby states are approxi-
mated by states that are constant between the interacting waves. It is further assumed that
:here exists a Galilean transformation that translates this local approximation into a station-
ary flow. This assumption will be in general valid provided the angle between the two
incident waves is small, i.e. if the initial amplitude of the perturbation of the contact discon-
anuity is sufficiently small.

The analysis of the interaction between a planar shock wave and a planar contact
iiscontinuitv for a polytropic equation of state is well known, [14, 17, 181. The type of dif-
fraction pattern that is observed is a function of the strengths of the interacting waves, the
angle at which the two waves meet. and the equations of state for the two gases. The simph-
_st of these diffraction patterns consists of the incident shock wave and contact discontinuity.
a single reflected wave that is either a shock or a Prandtl-Mever rarefaction wave. a transmit-
:ed shock wave, and a deflected gas interface behind the point of interaction. This so called
-egular shock diffraction is observed provided the angle between the interacting waves is sut-
ficiently small. Many other configurations besides the regular diffraction node are possible.
these include Mach type reflections and precursor shock type configurations, see [19,201.

The interaction between a steady state shock wave and contact discontinuity can be
regarded as a Riemann problem for the steady flow Euler equations. The line perpendicular
to the upstream contact becomes the space-like axis, and the line parallel to the upstream
contact becomes time-like in the downstream direction. The data for the Riemann oroblem
onsis-s of the state behind the incident shock wave. and the upstream state on the side of the

contact coposite to the incident shock. It is assumed that both states are supersonic. Again
'his will be the case for sufficiently small incident angles. A solution is sought for this
'4iemann problem in the class of self-similar functions that consist of constant states
.ecarated by downstream oriented shocks. Prandtl-Meyer rarefactions, and contact
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jiscontinuities. The abstract structure of this solution is completely analogous to that of the
time devendent Riemann problem in one space dimension. The difference comes from the
:ncreased nonlinearity of the wave curves.

The characteristics for supersonic flow come in three families: streamlines, and two

ionic wave families that cross the streamlines at the Mach angle sin(A) = E. Where c is the

local sound speed and q is the flow speed. The characteristic family associated with stream-
ines is linearly degenerate and the associated waves are contact discontinuities or slip lines
across which the pressure and flow angle are continuous. The sonic characteristic families
are genuinely non-linear provided the fundamental derivative of gas dynamics

2 62e(T, S)/a'r3

For most materials C > 0, although may be negative near phase transitions. For a polytro-

pic gas, > 1. If it is assumed that > 0, then the sonic characteristic wave

families support waves that are either shocks or Prandtl-Meyer rarefaction waves. Since the

streamline characteristic field is linearly degenerate, it follows that the solution to the
Riemann problem for steady planar flow can be found by calculating the intersection of the
wave curves for the two sonic families through the data points in the pressure - flow angle
phase space, see (161. The shock portion of the these wave curves correspond to the well
know shock polars as described in [21].

Figure 3.1. shows a representative shock diffraction pattern along with a pair of generic
streamlines and the corresponding shock poiars for the case of a reflected shock.

The application of this analysis to the direct simulation of the shock contact collision
,onsists of calculating at each time step a new steady diffraction pattern based on the chang-
ing angles between the incident waves. The transformation from the locally steady configura-
tion to the global reference frame for the entire simulation is found by calculating an inter-
section between the two propagated sections of the incident shock wave and contact discon-
tinuity. This intersection defines the position of the point of shock diffraction at time t - At.
The difference between the positions of this point at the beginning and end of the time step
provides the transformation between the two frames of reference.

There are several important issues connected with the changes in topology for the
tracked waves as they collide and interact. These include the numerical detection and identif- A

ication of the tracked wave interactions, and the changes to the tracked wave structures
needed to simulate the underlying physics of the interactions. See [161 for a more detailed
discussion of these issues.

4. Numerical Results V

Figure 4.1 shows a series of frames documenting the growth of an unstable finger in an
air zo sulphur-hexafluoride (SF,) interface. Both gases are modeled as polytropic gases with

- = 1.4. and y = 1.094 respectively. The shock wave is incident in the air and the ratio of % W
-he pressure behind the shock to the pressure in front is 10. At room temperature the SF, is
ioout 5.03 times as dense as air. A net vertical velocity is given to the initial contact discon-
:inuitv. This is done since the boundaries at the top and bottom of the computational rectan-
gte are open, and it was found that the contact discontinuity exits the computational rectangle
;arlv in the simulation if a reference frame in which the original gas interface is at rest is
uscd.

Tihe gas interface is flattened by the incident shock wave as the two waves collide. The
diffraction of the shock wave through the interface causes the reflected and transmitted
ihocks to assume the geometry of the original gas interface. However, as the waves continue
:o propagate away from each other, the unstable mode in the contact discontinuity interface
begins to grow, while the two shock waves restablize to planar curves. The two shock waves
cventually exit the open boundaries, leaving the contact discontinuity as the only tracked
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-his simulation is interesting since during the shock diffraction portion of the run, the
".ansmitted shock wave is nearly contiguous with the deflected contact discontinuity behind
ne point of diffraction. The angle between the two tracked waves is less than 1'. It is

helieved that one strength of the front tracking method, is the ability to resolve such closely
proximate waves.

Figure 4.3 shows a similar interaction, except here the shock is incident in the heavier
Jas. Both gases are taken as polytropic with -y = 1.4, while the pressure ratio across the
ncident sthock is 100 and the heavier gas is ten times as dense as the lighter gas. One notes

-hat the phase of the contact is reversed by the shock wave collision, and the interaction pro-
uces a reflected rarefaction wave rather than a reflected shock wave. The two tracked

waves on the upper side of the contact are the forward and backward edges of the reflected
rarefaction wave. The long time behavior of the unstable interface is show in Figure 4.3d.
rhere is some question about the dimple that is produced in the lower edge of the contact.
This may arise as a result of numerical instability. However there is some evidence that this
dimple may be physical. Further studies using finer grids and comparison with other simula-
rions are needed to resolve this question.

In addition to calculations of the growth of a single finger, simulations that invoive
several unstable modes have been performed. Figure 4.4 shows a three mode interaction
with the interface separating warm air from cooler air, figure 4.5 shows the interaction of a
shock wave incident in helium (-t = 1.63) with a helium to air interface.

5. Conclusions

It has been shown that front tracking offers a useful method for the simulation of shock
wave and contact discontinuity interactions. It allows for a sharp resolution of the diffracted
wave patterns produced by the interaction of the two waves, and a clear picture of the growth
of unstable modes in the gas interface.

The framework for the resolution of tracked wave interactions has been shown to be
capable of handling complicated situations. Furthermore, it is possible to include new bifur-
cations as they are needed, or to remove tracking when the result of a wave interaction is
either too complicated or unknown.
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..:transmitted shock transmitted shock streamline
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(c)
901

transmitted shock polar

PRESSURE

refected shock polar A" / N
\/

incident shock polar -

-57.30 VELOCITY ANGLE 57.30

F-g. 3.1. A shock wave-contact discontinuity collision that produces a single reflected
,nock. The reaction occurs in air modeled as a polytropic gas with y = 1.402. The gas

,n the transmitted shock side of the ahead contact discontinuity Is four times as dense
.s the gas on the incident shock side. The angle between the incident shock and the
ahead contact discontinuity is 450, and the ratio of the pressures across the incident
shock is 10. The flow is turned by about 30.30 through the incident shock. -9.80
through the reflected shock, and 20.50 through the transmitted shock.
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fa) time 0 (b) time 0.02 

(c) time 0.5 
( ) 

10 ^x = 10 Ay 
(d) time 3.5 

Fig. 4.1. A shock hitting a contact discontinuity separating air from the gas SFf,. The 
contact discontinuity curve is given an initial shape of a sine curve. The shock is in- 
cident from the air and has a pressure ratio of 10. The boxed region in Fig. 4.1b is 
blown up in the next figure. 
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time 0.02 

deflected contact 

.rN.. 

incident shock 

'■v^ 

reflected shock 

transmitted shock 

ahead contact 

Ax - Av 

Fig, 4.2.   A blowup of a subregion of Fig 4,1b showing the incident shock colliding with 
the ahead contact discontinuity, producing   reflected and transmitted shocks. 
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;'a) time 0 (b) time 0.12 

(c) time 0.5 

( ) 

10 Ax = 10 Ay (d) time 5 

Fig. 4.3. A shock-contact interaction that produces a reflected rarefaction wave. The 
pressure ratio across the shock is 100 and the density ratio across the contact discon- 
tinuity is 10. Both gases are polytropic with -y = 1.4. The shock wave in incident in the 
heavier gas. 
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(a) time 0 (b) time 0.04 (c) time 0.12 

4 > 

LOAx = lOAv 

(d) time 0.5 (e) time 2 (f) time 3 

n 

Fig. 4.4. A series of frames showing a shock contact collision interaction. Both gases 
are poiytropic with -y = 1.4. The pressure ratio across the incident shocJf is 100, and the 
density ratio {above to below) across the original contact is 2.86.   The grid is 40x80. 
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(a) time 0 ix.s (b) time 0.25 \LS 

:OAx = lOiiy 

(c) time 0.5 (xs (d) time 4 \xs 

:V.JT. n   r o CJ 

(e) time 20 JLS (f) time 30 |xs 

^ 
^ 

P,    /^ ^     ^ ^r^    f\ 
;V 

^ 

Fig. 4.5. A series of frames showing a shock in helium (7 = 1.63) colliding with an air 
{y = 1.4) - helium interface. The pressure in front of the shock is 1 atm. and the pres- 
sure behind is 1000 atm.. The density of dry air at 25°C is 0.00118497 g/cc and the den- 
sity of helium at the same temperature is 0.000101325 g/cc.   The grid is 120x80. 
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ABSTRACT. We describe several techniques that are based on Richardson's
extrapolation for estimating discretization errors of finite difference
solutions of one- and two- dimensional hyperbolic systems. These a posteriori
error estimates are intended for use with adaptive mesh moving and local
refinement procedures. Mesh moving algorithms produce nonuniform grids which
necessitate special treatment of solution and error estimation techniques.
The required adjustments are discussed using a two step MacCormack method as a
model finite difference scheme. We also discuss automatic time step selection
procedures and the effects of artificial viscosity. Extrapolation schemes
that produce separate estimates of the temporal and spatial discretization
errors are presented and we show how these may be used to control local mesh
refinement. Several examples illustrating these techniques are presented.

I. INTRODUCTION. With the use of adaptive methods to solve time-dependent
partial differential equations there exists a requirement to compute solutions
on moving nonuniform grids. There is also a requirement to estimate the local

discretization error as feedback to modify or refine the mesh. In this paper,
we discuss the MacCormack finite difference scheme and a Richardson
extrapolation-based error estimation procedure that was used in the adaptive
algorithm of Arney [3] and Arney and Flaherty [4,51 to solve time-dependent
hyperbolic systems in one and two space dimensions. Examples of other
adaptive methods with these requirements are Ral and Anderson [30], Adjerid
and Flaherty [2], Bell and Shubin [101, and Davis and Flaherty [14].
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Finite difference methods use a mapping to transform the time and space
variables from a moving nonuniform mesh to a stationary uniform mesh. The
method used to compute the metrics of this transformation must be carefully
chosen in order to preserve the stability, conservation, and accuracy of the
scheme (cf., Thomas and Lombard [33,34] and Hindman [19,20]).

The MacCormack finite difference scheme has had wide use in solving
Eulerian conservation laws for fluid dynamics. The recent use of artificial
viscosity to make this scheme total variation diminishing (TVD) makes it more
attractive as a general solver for problems with discontinuities (cf. Davis
[13] and Roe [31]). The MacCormack scheme, our implementation of the
differencing of the metric terms, adaptive selection of the time step, and the
TVD artificial viscosity of Davis [13] are discussed in Section 2. The
Richardson's extrapolation-based error estimation method produces a point wise
approximation of the local discretization error which can be used to construct
several global measures of the discretization error. Our error estimate and
its implementation on a moving mesh are discussed in Section 3. In Section 4,
we present computational results of solutions of hyperbolic problems.
Computations were performed in one and two dimensions on stationary uniform
and moving nonuniform grids. In Section 5 we discuss the utility of our
methods, the computational results, and future work.

2. SOLUTION SCHEME. Consider the hyperbolic vector systems of conservation
laws in two space dimensions

ut + f x(x,y,u,t) + g y(X,y,u,t) = 0, (x,y) E D, t > 0 (2.1)

+ +

u(x,y,O) = u0 (x,y), (x,y) E D U 3D, (2.2)

with appropriate well-posed conditions on the boundary 3D of a rectangular

domain D.

We chose to implement the MacCormack finite difference scheme for
hyperbolic problems because of its general applicability. The MacCormack
scheme, like most higher-order methods, will suffer a reduction in order on a
moving nonuniform grid. Despite this fact, proper mesh moving and node
placement by an effective adaptive procedure provide enough efficiency and
accuracy to compensate for this order reduction.

A. MacCormack Scheme

In order to discretize (2.1) we introduce a transformation

- (x,y,t), n - n(x,y,t), T = t, (2.3)

from the physical (x,y,t) domain to a computational (P,n,r) domain where a
uniform rectangular grid will be used. Under this transformation (2.1)
becomes

4. + + + +
U + u + un +f +fx +gy + gn 0. (2.4)
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The transformation metrics (EXEyEt qxonylnt) are related to the metrics

(xEXnxTIy ,yntyT) by the identities

y -x -

yq -xq(yx - sry) -y=

x J -' y J -7 t J - ' nx =  F-'

x& (yEx - x yT) (2.5)
-- ,

Jy txE - xn E

Using (2.5) in (2.4) gives

(yx -x y) (y x -xy) y -y -xx

.u + u + 4u + +? n ~.+?,~i t ~ ~ 2 +g(

(2.6)

This equation can be rewritten in another form in the original transformation

metrics by further substitutions of (2.5) into (2.2) as

+ + +  0 + 2
u - (xTE X + yTy) u (xTn X + ) + r +f n +gE +gn =0. (2.7)

Some authors (cf., Hyman [22] and Thompson [35]) prefer to write this equation
in still another form as

+ 4. + + +
uT + uEt + unnt + fEx + g&y + g Iy = 0. (2.8)

A uniform space-time grid having mesh spacing AE x An X AT is introduced
onto the computational domain. The finite difference solution at
(LAE, mAn, nAT) is referred to as tn , A similar notation is used for the

+ + '

fluxes f and g and the metrics (cf. Eq. (2.5)). The two-step MacCormack scheme
[24] uses first-order forward temporal and spatial difference approximations
in the predictor step, and first-order backward differences in the corrector

step. The predicted solution U satisfies-- m

Un~ u -- Un - !1+n ifI* v
U*nmi + A t, - , m - ,m,

jj' -un' [(-~ U£m(t)n m +f+, f )

L - t.

+ rn n nm+n)(t,

9X .n, U .

,+im - f£ E ( y),m L"I+
+ n EMI ' 29

.. 1 . ..[. .... *.¢ ¢'£n.. +, ".' +"' ,' n ." ,"I.,'""", .-. '''''.



The metrics (x ) , etc. are computed by forward differences. The corrected
x XLm

solution UnZi satisfies 5

+ I + +n+ AT r+n+1 +ni )n+1 + n+i n+1 n+n+ Un + U -- Ej - iU1,m 2 LRU,m -9.,m - - . ,m - L-I,m) t +,m ,m L-J1,m) xI,m

+n+1 +n+1 )(]n+1] -T [(f+i 1 n+1 n+(+ 1X,m -i -M ) ' yI )m An 'M -:t , m-i (t)£,m (2.10)

+ fn+1 n+1 n+1 +n+1 +n+1 * n+I].t--,m --L,m-I )  xZ £,m +(.m-i.,m-i) (r ,m9  '

+n+1
with metrics computed by backward differences. The notation f denotes

,-n+ , m
f[*i,m), etc. The use of first forward and backward difference approximations

for the metrics implies that the transformation from the computational to the
physical domain is piecewise trilinear in space and time for the predictor and
corrector steps. Such low order difference approximations are responsible for
reducing the orders of the MacCormack scheme. A smoother transformation and
the use of higher-order difference approximations of the metrics could be used
to maintain second-order accuracy.

It was shown by Hindman [19,20] that this differencing of Equation (2.6)
produces consistent approximations. Therefore, a uniform flow solution is
maintained. Other conservative forms for the transformed equations were
investigated by Hindman [19] and found to be less efficient or needing special
differencing of the metrics for computing consistent approximations.

Equation (2.4) is conservative on a moving mesh. We show this for a

one-dimensional scalar conversation law by investigating the Rankine-Hugoniot
jump conditions across a shock discontinuity. Consider a conservation law in
the form

-W ]G u dx) + f(u)1  = 0 • (2.11)

The jump conditions for a discontinuity at x = s(t) satisfy

S [u] (2.12)

where [q] indicates the jump in q and s denotes the shock velocity [37].

A conservation law on a moving mesh produced by a transformation of
variables to a uniform stationary mesh satisfies

(L +t L j ux d& + f(u) 0 • (2.13)
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Assuming the existance of a shock discontinuity = r(T) gives

;[uj + jr (ux E) d& + J00(ux E)Td& + f(u)~ 0 .(2.14)

-.4 r

Using the chain rule provides an integrable form

;x E[u] + Ir (ux T - f) Ed & + J00ux T- f) d + 0 u).0(2.15)
~r

Integration of this equation gives jump conditions in the computational domain

as

rx [u] - [f] + xT[u] = 0 • (2.16)

Since s(t) and r(T) are related by

= r x +x , (2.17)TL

the appropriate jump condition (2.12) is recovered.

B. Variable Time step.

The explicit MacCormack scheme has a stability restriction that limits
the time step allowed for a given spatial mesh. For efficient computation,
the time step should be adaptively set close to the maximum allowed by the
Courant, Friedrichs, Lewy theorem [27]. Thus, we choose

AT = (2.18)

2 V7 max(*,w)

The computational mesh has been selected to have spacing A = An = 1 and the

constant 0.8 provides a twenty-percent margin of safety. The quantities i

and w are the spectral radii of one-dimensional conservation laws on moving

meshes, i.e.,

'P max[(X i - x ) + ( - y T3 ] , (2.19a)

w max[(Xi - x )nx + (pi - Y )ry] , (2.19b)
ST x 1 T y

where Xi and Pi are eigenvalues of f (u) and g+(u). These eigenvalues and the

metrics in (2.19) are evaluated at the beginning of each time step.
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C. Artificial Viscosity

The MacCormack scheme, being a second-order accurate centered scheme,
produces spurious oscillations near discontinuities. In order to eliminate or
reduce these oscillations, artificial viscosity or dissipation is added to the
solution to diffuse the discontinuity. The viscosity is often problem
dependent, and considerable "fine tuning" is usually needed to balance the
effects of the spurious oscillations and diffusion [23].

We use an artificial viscosity model due to Davis [13] which is not
problem dependent and only requires knowledge of * and w. This artificial
viscosity model is designed to convert the MacCormack scheme into a total
variation diminishing (TVD) scheme in one-dimension. A scheme is TVD if the
total variation of the solution to an initial value problem is non-increasing
in time. Recent research efforts have resulted in the development of other

second-order accurate TVD schemes (cf., Osher and Chakravarthy [28] and
Warming and Beam [36]).

The artificial viscosity of Davis [13] is based on a flux limiter that
does not depend on explicitly determining the upwind direction and, with a
recent modification by Roe [31], does not affect the region of stability of

the MacCormack scheme. Because the MacCormack scheme also does not determine
the upwing direction, the combined use of the MacCormack scheme and Davis's
artificial viscosity is computationally simpler to perform than many other TVD
schemes. The artificial viscosity terms are calculated from the solution data
at the beginning of the time step. For two dimensional problems separate
dissipative terms are calculated in the and n directions respectively.

3. ERROR ESTIMATION. Accurate a posteriori error estimation is an integral

part of an adaptive software system. Error estimation can be the most
expensive part of an adaptive procedure and an important goal is to find
accurate and inexpensive ways of estimating the discretization error (cf.,
Babuska, et al. [8,9]). The error estimation technique is dependent on many
factors, including the type of solver used in the algorithm, the type of error
to be determined, and the norm in which the error estimate-is to be measured.
It is most desirable to have a procedure that provides pointwise estimates of
the error which can then be used to find estimates in several local and global
norms.

Mesh nonuniformity affects the accuracy and convergence of numerical
schemes and error estimation. The effects of the mesh on the solution scheme
have been studied by Ciment [12], Fritts [17], Hoffman [21], Osher and
Sanders [29], Sanders [32], and Mastin [25]. Error analysis seems to be more
natural and further developed for finite element schemes, especially for
elliptic and parabolic problems (cf., Adjerid and Flaherty [1,2], Zienkiewicz
et. al. [38,39], and dabuska and Rheinboldt [6,7]), where relatively
inexpensive local calculations are used to provide accurate global spatial
error estimates. More study needs to be done to find less expensive and more
accurate error estimates for finite difference schemes for hyperbolic
problems.
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We calculate the local temporal and spatial portions of the discretization
error, using an algorithm based on Richardson extrapolation. Flaherty and
Moore [15,16] and Berger and Oliger [11] also use Richardson extrapolation to I
estimate error on uniform meshes for their local mesh refinement algorithms.

A. Richardson Extrapolation Error Estimation

We develop the error estimate for the second-order MacCormack scheme for
a linear scalar problem in two dimensions. Separate pointwise estimates at a
general spatial node i, at time t, for the local temporal error E (t) ands 1
local spatial error Ei(t) are obtained with two different extrapolation
procedures.

Consider a uniform mesh with spacing Ax x Ay and time step At. Let the
exact solution at node i and time t be denoted as ui(t), the numerical
solution by the MacCormack scheme at the same point and time as Ui(t;Ax,Ay,At)
and the MacCormack finite difference operator as L(Ax,Ay,At), i.e.,

Ui(t + At; Ax,Ay,At) = L(Ax,Ay,At)Ui(t;Ax,Ay,At). (3.1)

Assume that the local error has a Taylor's series expansion of the form
u.(t) - Ui(t;Ax,Ay,At) = At[c At2 + c2 x2 + c3tY2 + .. j , (3.2)

1 3

where the constants c,, c2 , c3 ,... are independent of the mesh spacing.

To estimate the spatial component of the error, we calculate a solution
on a mesh of double spatial size (2Ax x 2Ay) with the same time step (At).
The local error on this mesh satisfies

u.(t + At) - Ui(t + At;2Ax,2Ay,At) = At[c At2 + 4c Ax2 + 4c Ay2 + .. ]. (3.3)
1 1 1 2 3

Subtracting (3.3) from (3.2), and neglecting higher-order terms, we obtain
an expression for the leading team in the spatial portion of the local error
for the MacCormack scheme on the Ax x Ay x At mesh as

Eis(t + At):= At[c Ax2 + c Ay2j1 2 3
(3.4)

= Ui(t + At;2Ax,2Ay,At) - Ui(t + At;Ax,Ay,At)l

Similarly, an estimate of the temporal portion of the local error,
Et(t + At), can be calculated by computing another solution on the Ax x Ay

spatial mesh using two time steps of At/2, subtracting this result from (3.2),
and retaining leading order terms as

Ei(t + At):= At ] At2.

i 1 ~ (3.5)4
7[~-Uijt + At;Ax,Ay,2 -t Ui~t + At;Ax,Ay,At)]
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The leading terms of the local error at node i, and time t + At, is

Ei(t + At) - Et(t + At) + E (t + At) • (3.6)

There are several disadvantages to this technique that should be noted:
(i) the error cannot be calculated for nodes on or adjacent to the boundary;
(ii) the solution must be smooth enough for the c1 , c , and c to exist;
(iii) the error estimation costs approximately three ies o

';e esmore to compute
than the solution; and (iv) the mesh must be uniform. Equation (3.6) may
still be useful as a mesh refinement or motion indicator even in situations
where jumps in the solution render it invalid as an estimate of the error.

Richardson's extrapolation can be done in a more classic manner provided
that we are willing to forego separate spatial and temporal error estimates.
We illustrate the method for a one-dimensional problem. In this case, the
error at node i in a solution on a mesh having spacing Ax x At is estimated
by calculating a second solution on a mesh with spacing Ax/2 using two time
steps of At/2. According to (3.3) restricted to one-dimension, the local
error on this mesh satisfies

u.(t + At) - Ui(t + At;Ax/2,2(At/2)) = At[c At2 /4 + c2 Ax
2 /4 + ... ]. (3.7)

Subtracting (3.7) from (3.3) and neglecting higher order terms we can
obtain error estimates for either Ui(t + At;Ax,At) or Ui(t + At;Ax/2,2(At/2))
provided that node i is common to both meshes. Our adaptive method carries
the fine grid solution forward in time; thus, we estimate its error as

+ At) At(c At2 + c Ax2 )
4 +2 (3.8)

( .~.{Ui~t + t; At -Ui(t + At;Ax,At)].

Using this procedure the error can now be calculated at nodes adjacent
to boundaries. Even though this error estimate costs four times more to
compute that the solution, we only incur this overhead in the first level of
refinement. No additional cost is incurred if portions of the mesh have to be
refined, because the solution on the refined mesh has already been computed

and 'stored while estimating the error for the coarser parent mesh.

B. Error Estimation for a Moving Nonuniform Mesh

Nonuniformity of the mesh changes the discretization error of the
MacCormack scheme. For simplicity, we will determine this error and analyze
its effects on the Richardson extrapolation error estimation using a linear
scalar problem in one space dimension.

u + bu = 0. (3.9)t x
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The local error for the MacCormack method on a one-dimensional moving

nonuniform mesh is

ui(t + At) - Ui(t + At;Ax, At) - At[ b (Axn+i _ Axn)u
Sxn+i4 r (3.10)

- At b2 (I r u x) + c IAt2 + c2AX
2]

where, Axn and Axn are the mesh sizes on the left and right of node i at time

step n, respectively, and Ax - max(Ax +Ax,). On the moving nonuniform mesh,

both the temporal and spatial error components contain second order terms
whereas the error on a uniform mesh is third order. The previous analysis can
be used to show that the leading component of the temporal error is

xn+i

E t(t + At):= At[ - At b2(1 - Ax nlu
Ax x (3.11)

= 2[Ui(t + At;Ax,2(1t)) - Ui(t + At;Ax;At)].

Calculation of the spatial portion of the error is more difficult since
the temporal portion of the error does not cancel upon subtraction of
solutions calculated on two spatially different meshes. We overcome this
difficulty and also greatly simplify the procedure in two dimensions by
constraining the mesh to maintain double size increments for special nodes of
the moving coarse mesh. This constrained grid structure consists of a coarse

mesh, shown with darker lines in Figure 1, containing properly nested fine
cells created by binary division of the sides of the coarse cells, shown by
lighter lines in Figure 1. The vertices of the coarse cells are denoted as
"independent moving nodes". Error estimates are calculated for these nodes.
The remaining nodes in the mesh of Figure 1 are "dependent moving nodes" which
must be moved to maintain the constrained grid structure. A solution is
computed for these "dependent moving nodes," but no error estimate is
obtained.

For the "independent moving nodes", the spatial error calculation can
proceed as for a uniform mesh; therefore, the local spatial error estimate is

ES(t + At) = At[ b n+1 nE 4(xr - xt)Uxx]

- Ui(t + At;Ax,At) - Ui(t + At;2Ax,At). (3.12)

The above analysis extends directly to two dimensions; hence, we have a
Richardson extrapolation-based procedure of estimating error on a moving non-

uniform grid. In practice, we test the need for local uniformity and, if
found, use formulas (3.4-6) to compute error estimates.
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Figure I. Spatial structure of the moving coarse mesh (bold lines) with
embedded fine mesh (fine lines) used for the error estimation.

Error estimation for systems of equations involves the use of a vector
norm at node i and time t. The examples of Section 4 use the maximum norm,
i.e.,

E (t) : max gij (t)I, (3.13)
< j < N

where N is the number of equations in the system and E (t) is the local error

estimate for the jth component of the solution vector a node i.

4. COMPUTATIONAL EXAMPLES. The solution and local error estimation procedures
are applied to four examples. In Example 4.1, we demonstrate the capability

of the MacCormack scheme with Davis' (TVD) artificial viscosity on a moving
nonuniform mesh. In Example 4.2, we investigate a one-dimensional problem
using a modified form of the error estimate (3.8,9). Examples 4.3 and 4.4 .4
illustrate the performance of the error estimation procedure on a problem
having a smooth solution and one with a jump in the first derivative,
respectively. We investigate the accuracy and convergence of the local error V
estimator by determining an effectivity index

= - - (4.1a)

at a fixed time t for several different meshes and different adaptive
strategies. Here e and E are the exact and estimated errors, respectively.
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HE# JJ Edxdy (4.1b)

is obtained by assuming E to be a piecewise constant function.

Example 4.1. Consider the initial-boundary value problem

u - yu + xu = 0, t > 0, -1.2 < x < 1.2, -1.2 < y < 1.2, (4.2)
t x y ..

0, if (x - L)2 + 1.5y2 >-

u(x,y,O) (4.3)
1 - 16((x - 1-)2 + 1.5y2) , otherwise,

and

u(1.2,y,t) - u(-1.2,y,t) = u(x,-1.2,t) - u(x,l.2,t) 0 • (4.4)

(0 if C < 0
u(x,y,t) = (4.5a)

, if C>0,

where

C I - 16((xcost + ysint - 2)2 + 1.5(ycost - xsint)2 ). (4.5b)

Equations (4.5) represent a moving elliptical cone rotating counter-
clockwise around the origin with period 2w. This problem was proposed as a

test problem by Gottlieb and Orszag [18] and was used as a test problem in a
survey by McRae et al. [26].

We show the sequence of meshes that were generated at t - 0, 1.6, and 3.2
using the adaptive mesh moving method of Arney and Flaherty [4] in Figures 2,
3, and 4, respectively. Arney and Flaherty's [4] mesh moving method utilizes
the error estimates of Section 3 to concentrate the mesh in the high-error
region beneath the cone and to follow it as it rotates. It also increases the
accuracy of the solution and reduces oscillations in the wake following the
cone. However, small oscillations are still present. Next we solve this
problem with the same moving mesh technique, by using Davis' (13] artificial
viscosity with the MacCormack scheme. Surface and contour plots of solutions
with and without artificial viscosity are shown in Figures 5 and 6. There is
no artificial wake behind the cone when artificial viscosity is used.
dowever, the artificial viscosity slightly diffuses the cone, widening its
base and reducing its peak from 1.0 to 0.88.
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Figure 4. M1esh of Example 4.1 at t 3.2. Noaes have moved with the
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Figure 5. Contour plots of the solutions of xample 4.1 on a moving
mesh without artificial viscosity 4left) and with artificial
viscosity (right) at t - 3.2.
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Figure 6. Surface plots of the solutions of Example 4.1 on a moving
mesh without artificial viscosity (top) and with artificial
viscosity (bottom) at t - 3.2.

Example 4.2. We consider an application of the direct Richardson's extrapola-
tion error estimation procedure (3.9) to the one-dimensional linear scalar

equation

ut + ux 0 0, t > 0 , 0 < x < 0.8, (4.6)

with initial and Dirichlet boundary conditions specified so that the exact

solution is

u(x,t) - ![I - tanh 100 (x - t - 0.2)]. (4.7)

This solution is a relatively steep wave that moves at unit speed across the
domain.

We solved this problem for one time step on seven different uniform

meshes having N computational cells per time step in order to investigate
accuracy and convergence of the error estimate. Table 1 shows the results
obtained from these calculations. The effectivity ratio appers to be
converging to unity.

We also solved this problem using Arney and Flaherty's [5] adaptive local
refinement procedure on a base mesh having Ax = At = 0.1 with a local error
tolerance of 1/128. The mesh created by the local refinement algorithm is
shown in Figure 7 and the solutions computed at each base time step are shown
in Figure 8.
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The adaptive composite mesh of Figure 7 shows a distinct pattern
associated with using the MacCormack scheme with Arney and Flaherty's (51
local refinement strategy. Spurious oscillations of the solution on the base
mesh cause several levels of refinement which drastically reduce the base mesh
spacing at the beginning of the each base time step. However, once these
oscillations have been controlled the need for refinement is reduced at the
later stages of the adaptive procedure. This situation could be alleviated by
including an artificial viscosity model with the MacCormack scheme, as in

Example 4.1.

Exact Error Estimated Error Effectivity Ratio

At N ge I 8II

0.1 8 .352 x 10-1 .467 x 10-2 0.133
0.05 16 .132 x 10-I .234 x 10-2 0.177
0.025 32 .236 x 10-2 .106 x 10-2 0.449
0.0125 64 .256 x 10-3 .138 x 10- 3  0.539
0.00625 128 .380 x 10-4 .294 x 10-4  0.773
0.00312 256 .403 x 10-5 .303 x 10- 5  0.752

0.00156 512 .661 x 10-6 .538 x 10- 6  0.814

Table I. Exact and estimated errors for different mesh
sizes for Example 4.2.

Example 4.3. Consider the linear scalar hyperbolic differential equation

ut + 2ux + 2uy , 0, t > 0 , 0.2 < x < 1.2 , 0 > y < 1 , (4.8)

with initial conditions

u(x,y,O) =(i - tanh 3(x - .ly + .1)) (4.9)
2

and with Dirichlet boundary conditions specified so that the exact solution of
this problem is

u(x,y,t) - (I - tanh 3(x - .ly - 1.8t + .1)) (4.10)
2

This solution is a smooth wave that moves at an angle of 45 degrees
across the domain. The problem was selected to show the convergence and
accuracy of the Richardson extrapolation error estimation procedures (3.4,5)
and (3.11,12.) We solve (4.8,9) for one time step, At = 0.012, on eight
different meshes. The mesh strategy of each calculation is described as
follows:

1) a stationary uniform (10 x 10) rectangular mesh,
2) a stationary uniform (20 x 20) rectangular mesh,
3) a stationary uniform (40 x 40) rectangular mesh,
4) a stationary uniform (60 x 60) rectangular mesh,
5) a stationary (40 x 40) mesh of nonuniform quadrilateral cells,
6) a moving (20 x 20) mesh with uniform rectangles,

7) a moving (20 x 20) mesh of nonuniform quadrilateral cells,
8) a moving (40 x 40) mesh of nonuniform quadrilateral cells.

Table 2 shows the results obtained from these calculations by comparing the
exact errors and the effectivity indices for the eight strategies.
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Strategies 1-4 show the convergence of the error estimates on uniform
meshes as the number of nodes increase. These errors show a rate of convergence
of O(Ax2 ,Ay2 ), which is predicted in Eq. (3.2). Comparison of the errors of
Strategies 3 and 5 show the error is cut in half by computing with a better
nonuniform stationary mesh. Further comparison of Strategies 5 and 7 shows
another reduction of error by half when the mesh is properly moved. The non-
uniformity of the mesh in Strategies 5, 7, and 8, produces little change in
the effectiveness of the error estimation. These nonuniform mesh computations
indicate a convergence rate O(Ax 1-3 2 ,,y1 '32 ).

Mesh Strategy Exact error Estimated Effectivity
error ratio

(from above) lei iE1I 1

1 0.0111 0.0071 0.64
2 0.00370 0.00318 0.86
3 0.000942 0.000908 0.96
4 0.000367 0.000368 1.00
5 0.000399 0.000418 1.04
6 0.00136 0.00124 0.91
7 0.000411 0.000370 0.90
8 0.000167 0.000156 0.94

Table 2. Exact and estimated errors for different mesh
strategies for Example 4.3.

Example 4.4. Consider the linear scalar hyperbolic differential equation

Ut + ux + 0. 2 5Uy = 0, t > 0 , 0.2 < x < 1.2 • 0 < y < 1 , (4.11)

with initial conditions

0 , if y < -4x + 1.2

u(x,y,O) = 0.8 , if y > -4x + 1.6 (4.12)

S-8- 2y + 3.2 , otherwise,

and with Dirichlet boundary conditions

0 , if y - 0.25t < -4(x - t) + 1.2

u(x,y,0) - 0.8 , if y - 0.25t > -4(x - t) + 1.6 (4.13)

-8(x - t) - 2(y - 0.25t) + 3.2 , otherwise.

The solution of this problem is an oblique ramp-like wave front that
moves at an angle of 14 degrees across the domain. The solution has a jump in
its first partial derivatives at the top and bottom edges of the wave front.
We expect some difficulty in estimating the error near locations where the
derivatives jump. In the region of the front itself the gradient of the
solution is constant and there is no error in the solution or in the error
estimate.
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We solved this problem for one time step, At - 0.015, for the following
six mesh strategies:

1
I) a stationary uniform (12 x 12) rectangular mesh,
2) a stationary uniform (24 x 24) rectangular mesh,
3) a stationary uniform (48 x 48) rectangular mesh,
4) a stationary uniform (64 x 64) rectangular mesh,
5) a stationary (24 x 24) mesh of nonuniform quadrilateral cells,
6) a uoving (24 x 24) mesh of nonuniform quadrilateral cells.

Table 3 shows the results of these calculations.

Mesh strategy Exact error Estimated Effectivity
error. ratio

flell I IIEII I_

1 0.0058 0.0016 0.28
2 0.00275 0.00110 0.40

3 0.000866 0.000479 0.55
4 0.000400 0.000222 0.56
5 0.00144 0.00078 0.54

6 0.000720 0.000349 0.49

Table 3. Exact and estimated errors for different mesh strategies
of Example 4.4. The error estimate is inaccurate but the

solution appears to be converging.

The results are once again as expected. The error estimate of this

problem with a jump in the derivative is not as accurate as the smooth
solution of Example 4.3. However, the error estimate still shows signs of
converging to the exact error in L for the uniform meshes of Strategies 1-4.

Once again the better nodal placement of the initial mesh by the mesh
generator of Arney [3] reduces the error by half from a uniform mesh. Also,
moving the mesh by the method of Arney and Flaherty [4] reduces the error by
half again.

5. CONCLUSION. We have shown that MacCormack's finite difference scheme and
error estimation based on Richardson's extrapolation can be used on moving
grids with local refinement. With proper computation of the transformation
metrics and the use of TVD artificial viscosity, the MacCormack scheme is
stable and is able to solve problems with sharp discontinuities.

The examples we have presented demonstrate the utility of these methods
and also point out their shortcomings. Of particular concern is the lack of b
any error estimation near the boundaries, the poor error estimation near
discontinuities, and the need to constrain the mesh to obtain any accurate
error estimation. These problems must be solved in order to effectively
utilize this solution scheme and error estimation procedure with an adaptive

technique.
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ABSTRACT. We present an adaptive local refinement finite element method for
solving vector systems of parabolic partial differential equations in two space dimen-
sions and time. The algorithm uses the finite element-Galerkin method in space and
backward Euler temporal integration. At each time step we obtain an estimate of the
error on each element, group the elements wh 4 error violates a user prescribed toler-
ance, form new local grids and solve the problem again on each of the new grids. We
discuss several aspects of the algorithm, including the necessary data structures, the
error estimation technique, and the determination of initial and boundary conditions at
coarse-fine mesh interfaces. Finally we present several examples which demonstrate
the viability of our approach.

I. INTRODUCTION. Over the past several years extensive efforts have been
made in using adaptive strategies to solve partial differential equations [2, 3]. In this
paper, we consider a local mesh refinement procedure for two-dimensional parabolic
partial differential systems where fine meshes are introduced in regions where greater
resolution is deemed necessary. Our approach permits finer meshes to overlap ele-
ments of coarser ones and is related to an earlier effort on h-reftirment methods for

This research was panjily supported by the U. S. Air Force Office of Scientific Research, Air "orce Systems Command, USAF.
under Grant Number AFOSR 85-0156 and by the SDIO/IST under management of the U. S. An' / Research Office under Contract
Number DAAL 03-86-K-0112.
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one-dimensional parabolic problems [5, 7, 10].

We consider an initial-boundary value problem for an m-dimensional vector sys-
tem having the form

ut + f(x,y,t,u,ux,uv) = [Dj(x,y,t,u)ux] + [D2(x,y,t,u)uy y, (xy)r= Q, t > 0,

(la)
u(x,y,0) = uo(x,y), (x,y)r =QL Q, (Ib)

u(x,y,t)=gD(x,y,t), (XY)6EaD, t>0, (Ic)

Dlurj1 + D2uYT! 2 = gN(x,y,t), (x,y)e Ca 2N , t > 0. (1d)

The domain Q is the rectangle ((xy) I a <x < b, c <y <d ) with boundary
a" = afUD U flN and unit outer normal 11 := [rl,I 2]T The system (1) is assumed
to be well posed and parabolic, i.e., D1 and D2 are positive definite. We do not expect
that our methods will be able to solve all problems having this generality, but our
one-dimensional procedure [10] has worked well on a wide range of linear and non-
linear problems.

Our approach begins with the solution of (1)' on a uniform space-time grid using
finite elements in space and the backward Euler method in time. At the end of each
time step, an indication of the local discretization error is generated on each finite ele-
ment. In our initial investigation of one-dimensional problems [5, 7], we used an h-
refinement (Richardson's extrapolation) procedure to compute a local error indicator.
This has subsequently been abandoned in favor of a p-refinement approach [10], which
increases the order of the trial space instead of reducing the mesh spacing. The p-
refinement strategy employs nodal superconvergence to improve computational
efficiency and it can be used to generate an asymptotically correct estimate of the
discretization error [1, 10]. Elements having high error are grouped into rectangular
regions called megagrids using a nearest neighbor clustering algorithm (cf. Berger and
Oliger [4]). Overlapping fine uniform grids are generated within the megagrids and
(1) is solved again on these grids. This process is repeated until a prescribed local
error tolerance is satisfied. An illustration of a coarse spatial mesh with two
megagrids and three fine grids is shown in Figure 1.

A tree is a natural data structure to manage the information associated with all of
the grids. Nodes of the tree represent data at the megagrid level, with finer megagrids
regarded as offspring of coarser ones. Information associated with overlapping fine
grids within each megagrid are stored as records at the nodes of the tree.

A finite element problem is formulated and solved on each grid within a
megagrid. This necessitates the prescription of appropriate initial and boundary condi-
tions on each space-time grid. Since our temporal integration is implicit, prescribing
boundary conditions is particularly complex in regions where meshes overlap (cf. Fig-
ure 1). An iterative procedure, analogous to Schwarz alternation (cf. Dihn et al. [61),
is used to successively calculate solutions on fine grids within each megagrid. We
observe that this procedure converges for a variety of problems, but have no analysis
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Figure 1. Coarse spatial background mesh with tv~o offspring megagi-ids
* (marked with diamonds and squares) and their local grids. High-error ele-

ments of the coarse mesh are indicated by x's. T
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demonstrating either convergence or stability. Starius [11] obtained some stability
results on a similar method for hyperbolic equations.

A description of the data structures and the local refinement procedure is given in
Section E. In Section III we present the finite element method and the local error esti-
mation technique. Section IV contains some preliminary computation results on three
linear parabolic problems. Our conclusions and plans for further improvements are
described in Section V. The examples indicate that the error estimation procedure
converges to the true discretization error as the mesh is refined and the solution pro-
cedure based on the Schwarz alternating technique converges.

H. LOCAL REFINEMENT AND DATA STRUCTURES. We outline our pro-
cedure for solving (1) on an arbitrary hexahedral megagrid R (o),p ,q ,F ,S ,L). The
domain co := {(xy) I a <x < ,y<y < 8); p and q are the times at the beginning
and end of the time step, respectively; F and S point to the parent and offspring
megagrids, respectively; and L is the record of information for the a local rectangular
grids within R.

A top level description of our local refinement algorithm is presented in Figure 2.
A solution and error indicators are generated on R using procedure solve (cf. Figure
3). Elements where the error indicator exceeds a prescribed tolerance tol are parti-
tioned into rectangular regions using the nearest neighbor clustering algorithm. As
noted, we call these regions megagrids. Berger and Oliger's [4] bisection and merging
procedure is used to generate local uniform fine grids for each megagrid. Local grids
within a megagrid can overlap, but the megagrids are independent of each other,
hence, each offspring megagrid may have different spatial and temporal refinement
factors. This also reduces communication between megagrids and, thus, simplifies the
computation of initial conditions on offspring megagrids. This representation may
additionally be suitable for execution on parallel computers. Temporal refinement fac-
tors are calculated and solutions are recursively generated for each megagrid.

In order to solve problem (1), the procedure locref is invoked on the coarse grids
R ( k,tk+i,O,SL), k = 0, 1, . . Solutions satisfying the prescribed accuracy
requirements are generated at each time tk, k = 1, 2,

The solution on a megagrid R ((o,p ,q ,F S ,L) is described by the procedure solve
of Figure 3. Initial conditions are generated for each local computation grid contained
in R. Following this, we compute an initial guess for the boundary conditions of the
local grids using either the prescribed boundary data at physical boundaries or linear
interpolation in time from the parent megagrid of R. A finite element solution is gen-
erated for one of the local grids and its solution is used to update boundary conditions
on all other intersecting local grids. This solution process is repeated on each local
grid in turn until satisfactory convergence is attained. Our procedure is, thus, similar
to the Schwarz alternating principle for elliptic problems, which has been used recently
to develop domain decomposition methods for parallel computation [6, 8].

A local grid is denoted as T(xm,y,d,d,,s). Each local rectangular grid is
characterized by the coordinates of its center (xyym), the lengths of its sides d. and
dy, and the slope s of a side of the rectangle. In order to avoid ambiguity, we choose
s 20 and let d. correspond to this side (cf. Figure 1). The number of elements
m i xni on local grid Ti = T((xm)i,(ym)i,(dx)i,(dy)ijst) is determined by a single mesh
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procedure locref (R (o)4 ,q ,F ,S ,L ),roI);
begin

solve (R (,p,q,FSL));
if any error indicator > tol then

begin
Form offspring megagrids;
for j := 1 to number of offspring do

Create local rectangular grids;
for j := I to number of offspring do

Calculate the temporal refinement factor tref Uj 1;
for j := 1 to number of offspring do

for i := I to tref U] do
begin

p[i] :-p+(i-1)*(q-p)/tref~j];

q[i] p[i] +(q-p)/tref[j];
locref (R (0[U ],p [i ],q [i 1,

R (o47 ,q ,F,S, ),S [j ],L [j ]),tol)
end

end
end { locref};

Figure 2. Recursive local refinement algorithm for the solution of (1.1) on
R (0,p ,q ,F ,S ,L) with an error tolerance tol.

spaL;ing parameter hR as mi = round(d/hR ) and ni = round(dX/hR). Thus, each local
grid in R has approximately the same spatial resolution. Many details of this algo-
rithm have been omitted and additional information is presented in Moore [9]. For
example, a strategy has been developed for storing the finite element solution at p and
q without unnecessary duplication or copying of information.

Initial conditions for each local grid are either determined from (1b) when p = 0
or by bilinear interpolation using the finest grids available in the tree structure at time
p > 0. Isolating local grids within megagrids greatly simplifies the search for data
needed for this bilinear interpolation. Thus, the search for a solution value at an arbi-
trary point is performed at the megagrid level until the finest megagrid containing the
point has been identified. The local grids of this finest megagrid provide the necessary
interpolation data. Scanning the points of a grid in a predetermined order can be used
to further reduce the complexity of the search procedure.

Similar considerations are required to determine boundary conditions on grid
edges that are not subsets of M. Our one-dimensional techniques [101 and the expli-
cit finite difference procedures of Berger and Oliger [41 used the notion of a "buffer"
to apply boundary conditions. The idea is to enlarge a local rectangular grid by
increasing d and d, by two or four elements so that "artificial boundary conditions"
may be obtained from data in low-error regions. However, in regions where local
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procedure solve (R (o),p ,q , ));
begin

for i := 1 to number of local grids do
begin

Compute initial conditions for local gridT"((xm,)j,(ym,)j ,(dx)j ,(dY )j ,s);
Compute boundary conditions forT((x,)j,(y.)j,(dx)j,(dY)j,s a);

end
for j := 1 to number of iterations do

for i := 1 to number of local grids do
begin

Solve the finite element problem for (1) on
T ((xm )j,(ym )j,(dr )i,(d )j si);

if j = number of iterations then
Compute error on T ((x.)i ,(Ym )j ,(dx)i ,(dy )i ,si)

Update appropriate boundary conditions
end

end { solve }

Figure 3. Solution algorithm on megagrid R (o,p ,q .F S )

grids overlap, accurate boundary conditions cannot be obtained from parent grid data
even with a buffer. Buffers do provide accurate boundary conditions in regions where
grids do not overlap and, for this reason, we continue to use them.

Dirichlet boundary conditions are obtained on the edges of buffered local grids by
piecewise bilinear interpolation in time using solution values from the parent megagrid.
In non-overlapping buffered regions, the interpolated boundary conditions satisfy the
prescribed error tolerance and are, thus, expected to produce acceptable accuracy. As
noted, accurate boundary conditions are obtained in regions where local grids overlap
by means of the Schwarz alternating principle. Hence, we initially solve a finite ele-
ment problem on local grid T, of R, realizing that the interpolated boundary data may
be inaccurate in regions where T, intersects other local grids. In solving the problem
on T 2 we use boundary data from T, with bilinear interpolation in regions where T,
and T 2 intersect. This sequential updating procedure can be continued iteratively until
satisfactory convergence is obtained. In practice, we halt the iteration after a few
cycles and compute an error estimate for each local grid in R. The grids of R are
refined if the error tolerance is not satisfied. Thus, we do not distinguish between
failure of the Schwarz iteration to converge and failure to satisfy prescribed accuracy
conditions.

Treatment of situations where local grids overlap aQ are considerably more com-
plex. A second complication arises when a local grid crosses the boundary of
o

(TF)j, where the subscript F denotes the parent megagrid of R. These issues are
i=1 464
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handled by regridding as described in Moore [9].

11L SPATIAL AND TEMPORAL DISCRETIZATION. As noted, the partial
differential system (1) is discretized on a local grid T of R using a finite element
Galerkin procedure in space and the backward Euler method in time. For !ach time
t e [pq 1, we assume that u e HE' and select a test function V e Hdl, where H'1 denotes
the usual Sobolev space. Functions that further satisfy Dirichiet conditions on DTare
said to belong to YE, while functions satisfying trivial Dirichiet conditions belong to
H10.

The Galerkin form of (1) on T is

(v'Ut) + (v,f(,-,t,u,u,,u,)) + A (v,u) = f vTg1 ~ds, for all ye HJ (2a)

where

(v'u) f fvTudxdy, (2b)
T

A (v,u) (v jvD, (xy, u)uX + vrD2(Xyt ,u)Uy ]dxdY. 2

Initial conditions are required at p = 0 and these can be obtained, e.g., by L 2 or H I
projection. Initial conditions for p > 0 trivially follow from the solution at the end of
the previous time step.

A finite element solution of (2) is obtained by approximating H I by a finite
dimensional subspace K of piecewise bilinear polynomials on T. The finite element
solution U satisfies

MVud) + (V,f(-,-,,U,U,,U,)) + A (V,U) f J T VgNds.
aT C-)~aQ~

for all V Is KO. (3a)

P(UO), p =0
U(x,y,p) = IP(U(,.-pD),' p > 0. (3b)

The projection P at p = 0 is obtained by constructing a piecewise bilinear approxima-
tion of uO. For p > 0, we proceed in a similar manner except that we construct inter-
polants using the finest grid solution available at t = p-

Temporal discretization of (3) is performed by the backward Euler method; thus,
we determine U'?(xy) as discrete approximation of U(xy ,q) by solving

(V,U'?) + At (V,f(-,-,r,U'? X YU)) +A (V,U'] = (V,UP) +
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At f VrgV(Xyq)ds, for all VE K0 , (4)
aTl-,AQ

Initial conditions for the discrete -system (4) follow the lines of (3b) for the semi-
discrete system.

A posteriori estimates of the discretization error of the solution of (4) are
obtained by means of a p-refinement technique. To begin, we calculate a second solu-
tion U (xy) of (2) using piecewise quadratic polynomials in space and trapezoidal
rule integration in time. This solution is higher order in both space and time than the
solution of (4); thus, the difference JjUq - U6 111 furnishes an estimate of the discretiza-
tion error of V . The computational efficiency of this procedure can be substantially
improved by using the nodal superconvergence property of finite element methods for
parabolic problems [1, 101. Nodal superconvergence implies that bilinear finite ele-
ment solutions converge at a faster rate in space at nodes than elsewhere. These con-
siderations imply that U6 can be calculated as

U6(x,y) = J6(x,y ) = (J (x,y ) + Eq (x,y), (5)

where ( (x ,y) is a piecewise bilinear function and E (xy) is a piecewise serendipity
function (a biquadratic polynomial less a quartic term) that vanishes at the nodes of T.
Specifically, we find that Uq(x ,y) satisfies

(V, O q - up ) + + (Vj'c ,,pUT ,UPUyP))] +

At )

1/[A(V,J q ) + A(V,UP)] = f/ f VTgV(x,y,q)ds + 12 f VTg(x,y,p)ds

for all V e K0 . (6)

Thus, a trapezoidal rule integration step is performed using the backward Euler solu-
tion UP (x ,y ) as an initial condition. Both (4) and (6) are a nonlinear algebraic system
which we solve by Newton's method. In order to reduce the computational effort
associated with assembling and solving (6), the Jacobian of (4) is used for both New-
ton iterations. The solution of (4) is obtained first and the result Uq (x,y) is used as an
initial guess for U (xy).

The piecewise quadratic correction Eq (x ,y) satisfies

(V,[(U +Eq ) - (UP +EP )I/At) + q2[(V,f(.,.,q -E X+Ex,(;+EY))

+ (V,f(-,-,p ,UP +EP,UP+EP,UP+EP))] + 1/2[A (V,C'? +Eq) + A (V,UP +EP)]

=h f VTgN(x,y,q)ds + 2 f vTgN(x,',p)ds forall VE K (7)
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AIM
As noted, the space K? consists of piecewise serendipity functions that vanish at

the vertices of the elements. Trivial initial conditions are used in the solution of (7)
for p > 0. Interpolated values of the initial error u°(xy) - U(x,y,0) onto K are
used at p =0.

Linear systems associated with the application of Newton's iteration to (4), (6),
and (7) are solved by the Lanczos acceleration of the Jacobi iterative method as imple-
mented in the iterative solution package ITPACK of Young and Mai [121.

IV. EXAMPLES. We consider a sequence of three linear problems that are
designed to illustrate the performance of our error estimation and local refinement pro-
cedures and convergence of the Schwarz iteration. Our results are very preliminary
and additional computational work and analysis will be necessary before firm conclu-
sions can be drawn.

Performance of our error estimation technique is measured by the effectivity ratio

(8)

Ilu(x,y,q) - Ull'

which is a ratio of the estimated to the actual error in the HI norm. Ideally, the
effectivity ratio should approach unity as the mesh is refined and should not differ sub-
stantially from unity over a large range of mesh spacings. The convergence of our
error estimate to the true discretization error has been established for one-dimensional
linear problems [10].

Example 1. Consider the linear constant coefficient heat conduction problem on
!a:= ((x,y) 10 <x,y < X)

ut = /2(u= + u.y), (x,y) Q, t > 0, (9a)

u(x,y,0) = sinxsiny, (xy)e Q.Q, (9b)

u(x,y,t)=O, (x,y)6afQ, t >0. (9c)

The exact solution of this problem is

u (x y ,t ) =e -  u (x ,y ,0). (10)

We solved (9) for a single time step on uniform grids having equal temporal and
spatial mesh spacings of ir/J, J = 10, 20, 40. The exact error and effectivity ratio are
presented in Table 1. The results indicate that the finite element solution is converging
at a linear rate and that the effectivity ratio is converging to unity.

Example 2. Consider the forced heat conduction equation on
= {(x,y) 10< x,y < I )
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J IIu(x,,YA) - U II "
10 0.1578 1.050
20 0.0882 1.012
40 0.0469 1.003

Table 1. Error and effectivity ratio for one time step and uniform spatial
meshes of spacing xtIJ for Example 1.

ut +f(x,y,t) = u= + uYY, (X,y)E tQ, t > to.()

with f (xy,t) and the initial and Dirichlet boundary conditions specified so that the
exact solution is

u (x ,y ,j) = sin t-20((x-%)2 +.(y (12)

With to = 0.5, we solve (11) for one time step on uniform grids having equal temporal
and spatial meshes of 1/J, J = 10, 20, 40. Results similar to those of Example 1 are
displayed in Table 2. Thus, once again, the error is converging to zero at a linear rate
and the effectivity ratio is tending to unity and is close to unity for all meshes. In this
example, as opposed to Example 1, the effectivity ratio appears to be converging to
unity from below. In practice, an upper bound is more suited to an adaptive local
refinement procedure.

I Ilu (x,y,At) - U'h 0

10 0.6796 0.996
20 0.3383 0.998
40 0.1668 0.999

Table 2. Error and effectivity ratio for one time step and uniform spatial
meshes of spacing it/J for Example 2.

We also solve (11) for 0 = to < t : 1 using the adaptive local refinement strategy
of Section II with a tolerance of 0.05 and an initial lOx 10 mesh having a time step of
0.1. Surface renditions and contour plots of the solution at t = 0.3, 0.5, and 0.8 are
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shown in Figue 4 and 5, respecdvely.

Figure 4. Surface renditions of the solution of Example 2 at t = 0.3 (upper
left), 0.5 (upper right), and 0.8 (lower center).
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Figure 5. Contour plots of the solution of Example 2 at t 0.3 (upper left),
0.5 (upper right), and 0.8 (lower center).
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Example 3. Consider the forced heat conduction equation (11) on
( (x,y) 10 < xy < 1 ) with f (x,y,t) and the initial and Dirichlet boundary con-

ditions specified so that the exact solution is

u(x,y,t) = 1.0 - tanh[10(x+y-t-0.45)j. (13)

This example is used to verify convergence of the Schwarz alternating principle. The
problem is solved for a single time step with to = 0.5 on an initial uniform coarse
lox 10 mesh having a time step of 0.1 and a tolerance of 0.05. Refinement was
needed at the initial time and 10 local grids, as shown in Figure 6, were introduced.
The initial coarse mesh is also shown as a reference. Schwarz iterations were per-
formed on these grids and we measure the difference in successive solutions on alter-
nating grids on .the portions of the boundaries of each local grid in regions where they
overlap. The maximum such difference after each Schwarz iteration is shown in Table
3. It appears that the iteration is converging at nearly a quadratic rate.

Iteration Maximum Difference
1 0.1506
2 0.0114
3 0.0016
4 0.0004

Table 3. Maximum difference between solutions on the boundaries of over-
lapping grids after each Schwarz iteration.

V. CONCLUSIONS. We developed an adaptive local mesh refinement procedure
for nonlinear parabolic systems on rectangular regions. A complex tree data structure
is used to manage a nest of local overlapping grids. An implicit finite element solu-
tion strategy using piecewise linear approximations and the backward Euler method is
formulated. We obtain an estimate of the local discretization error of these finite ele-
ment solutions using a p-hierarchical approach with piecewise serendipity approxima-
tions and trapezoidal rule integration. The Schwarz alternating principle is used to cal-
culate boundary conditions on portions of local grids that overlap.

Our results indicate that the error estimation procedure converges to the exact
local error as the mesh is refined. As noted, a proof of this convergence has been
established for certain linear one-dimensional problems (cf. Moore and Flaherty [10]).
It should be possible to construct a proof of convergence of the two-dimensional error
estimate using the ideas developed in the one-dimensional case. The use of the
Schwarz alternating principle also appears to be a very efficient method of calculating
boundary conditions in overlapping-grid regions.
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Figure 6. Local grids introduced after the initial time step for Example 3. A
The original coarse grid is also shown.
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We are encouraged by the performance of our methods on these preliminary
problems; however, several aspects of our approach need improvement. The Lanczos
iteration used to solve the linear system appeared to be far less than optimal. The
stopping criteria used in the ITPACK [12] implementation was too conservative for
our applications. Creation of local solution grids is difficult and complex near domain
boundaries. At present we know of no way of improving this defect. We have plans
of extending our methods to non-rectangular domains using an overlapping-grid mesh
generation procedure.
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Propagator Matrices in the Solution of EMP
Problems

K. C. Heaton
Defence Research Establishment Valcartier

Abstract

A general solution to the problem of the electric and magnetic fields pro-
duced by extremely energetic explosions is difficult to obtain since boundary
conditions near the explosion site, at infinity and at any intermediate conduct-
ing surface must all be satisfied. In particular, when these explosions occur
near the surface of the Earth, the conductivity of the Earth is usually great
enough that the tangential component of the quasi-static electric field and the
normal component of the quasi-static magnetic field along the surface of the
Earth must vanish.

In this work, the complete set of boundary conditions for the electric and
magnetic fields at infinity, between the air and the Earth's surface, and between
the air and the perfectly conducting plasma close to the explosion site are
derived. The field equations, source functions and boundary conditions are
written in terms of spheroidal and torsional vector fields. It is shown that, in
this form, a propagator matrix formalism which automatically guarantees that
all boundary conditions are satisfied can be developed to solve the equations for
the electric and magnetic fields. The propagator matrix formalism developed
in this work is applied to the numerical solution of Maxwell's equations for
the electric and magnetic fields for the case of a typical explosion. It is found
that the boundary conditions along the surface of the Earth impose consistency
conditions which must be satisfied by the individual multipoles of the fields,
as well as by the source current densities produced by the original explosion.
Values are obtained for the electric and magnetic fields and compared with
experimental results.

I Introduction

Electric and magnetic fields of appreciable magnitudes, capable of being detected for
considerable distances, accompany energetic explosions (Glasstone and Dolan 1977).
When the explosions are caused by chemical explosives, the fields are generated by

the compression of magnetic flux within the ionised gases at accelerating shock

fronts (Wilhelm 1984, 1983) and by the dust cloud formed by the explosion (Bacon
and Cherin 1984). For the case of nuclear explosions, the primary mechanism for
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the production of these fields is electric currents caused by Compton scattering

of electrons by X- and -1-rays, with the other two mechanisms having very minor
roles or none at all. The fields caused by nuclear explosions are generally known
as electromagnetic pulses (EMP) (e.g. Longmire and Gilbert 1980, Longmire 1978).
As a comparison of the energies involved in each case would suggest, the fields
produced by nuclear explosions are several orders of magnitude stronger than those
caused by chemical explosions.

For the case of chemical explosions, the dust induced electromagnetic noise
(DIEMN) is capable, at the least, of interfering significantly with radio and tele-
vision broadcasts. The fields produced by the compression of ionised gases can

initiate radio-controlled detonators or chemical explosives. In the case of nuclear
explosions, the fields generated can produce field strengths of several kV/m over
kilometre distance scales and time scales of milliseconds. In the Johnston Island
test of 1962, the fields created by a nuclear explosion seem to have caused current
surges in electrical equipment of sufficient magnitude to have triggered fuses in the
street lighting system in Honolulu some 800 miles distant (Glasstone and Dolan
1977).

Lightning flashes have been observed to occur at times up to 1 second after
a nuclear explosion at distances of .9 - 1.4 km from the explosion site (Wyatt
1980, Uman et al 1972). These flashes are presumed to have been produced by the
dielectric breakdown of the air by the electric fields generated by EMP. The most
commonly used models for EMP are unable to predict electric fields of sufficient
magnitude (usually believed to be - 100 kV/m ) to cause this breakdown (Wyatt
1980, Uman et al 1972).

Extensive work has been done in the past few years on the theoretical calculation
of EMP effects at various stages of the explosion. Particular interest has been paid
to the EMP generated by an explosion close to the surface of the Earth, especially
during the so-called quasi-static phase during which the rate of change with respect
to time of the electric and magnetic fields is sufficiently slow that it may be neglected
in Maxwell's equations. It is well known that an electric field must vanish within
a perfect conductor. In the region over which the Earth can be considered to be
a perfect conductor, the quasi-static EMP field at the surface of the Earth should
be zero. This boundary condition is automatically satisfied by odd multipoles of
the electric field. From this condition, it has generally been assumed that the
quasi-static electric field produced by a near surface blast can consist only of odd
multipoles of the field throughout all space. (e.g. Downey 1983, Grover 1980)

In this paper, the complete set of boundary conditions for the quasi-static elec-
tric field and magnetic fields at infinity, between the air and the Earth's surface,
and between the air and the perfectly conducting plasma close to an explosion site
are derived. The field equations, boundary conditions, and source functions are
expressed in terms of spheroidal and torsional vector fields. A general algorithm
which uses propagator matrices and which automatically guarantees that all bound-
ary conditions are satisfied is presented, and used to obtain numerical solutions to
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Maxwell's equations for the electric and magnetic fields produced by a typical ex-
plosion. These results are then compared with experimental results. In particular,
it is found that the boundary conditions along the surface of the Earth impose con-
sistency conditions on all of the multipoles of the electric and magnetic fields, but
that these conditions do not preclude the existence of even multipole fields.

2 Maxwell's Equations for the Quasi-static Phase
of EMP

The time-dependent Maxwell's equations are

V*.=Pe, (1) ,

0 , (2)

a X (3)

&b -J + xH, (4)

where F3 is the magnetic induction in webers/m 2 , ]i the electric field in volts/m,
the current density in amps/m 2 , t = E the electric displacement in coulombs/m 2 ,

/H = the magnetic field strength in amp-m, P, the space charge density in
JA

coulombs/m', E the dielectric permittivity in faradays/m, and j the magnetic per-
meability in henrys/m. Throughout the course of this paper, we shall be concerned
only with the calculation of the fields in air, and hence e and 1A will be assumed to
take their free space values, 60 and 1&o.

Assuming that the fields are evaluated at times late enough that the fields are
nearly constant in time, eqs. (3) - (4) become

VxE=o, (5)

x A = oJ, (6)

in air.
Now, the current density J can be divided into two parts, the source current

J, , and the conduction current J4. The source current arises from the ionisation
created by the explosion; its exact form depends on whatever the dominant ioni-
sation mechanism is at the time the fields are evaluated. For chemical explosions,
this can be the ionisation created by the shock or collisions with dust particles. In
nuclear explosions, J, is created primarily by Compton scattering of the electrons
in the air by -y- and X-rays. Since, to a good approximation Ohm's law is obeyed
in air, one can write

7 +(7)
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where J, = o/ and the conductivity a is measured in 1/(ohms-m). In air, a depends
upon the value of E (e.g. Lee 1980, Longmire and Gilbert 1980). However, up to
fields of strength - 100 kV/m, this dependence is small and can be neglected.

According to the Helmholtz-Lamb decomposition theorem any vector field can
be represented as the sum of a spheroidal vector field, S , and a torsional vector
field, T, where

n 1 (8)
m=-oo n0O

00 00(9T =n Z :, (9)
m=-oo n-O

and

S = U ) wm ()~ a s, (0,4)) + Vw (r) as (,4)) (10)

sin i + Wn-(r) '- 4.(i"sin 0 a9-0 o0

In eqs. (8)- (11) , Un, Vn-, W" , are the functions containing the radial dependence
of the vector associated with each surface spherical harmonic, Sn . The surface
spherical harmonics of angular order m and rank n are defined by

Sn'(9,4) = Pn(cosO)e "m (12)

where the associated Legendre functions, Pn, are given by

Pn(cos 8) 1)' sin 0d ' P(cs) (13)
(-1)sin'9 (cosO)m

and the Legendre polynomials, Pn , by

Pn(cose) = (-1)" dn(sin2n ) (14)
2nn! d(cosO)n

r, 0, and 4) the standard spherical polar co-ordinates with the origin located at the
site of the original explosion, as shown in Fig. 1.

From the orthogonality conditions on spheroidal and torsional fields (Bullard
and Gellman 1954, Smylie 1965) it is known that

fo2,rfo SP. SI)' n sinG d8 do (15)

41r(- + 1) [u"' + n(n + 1)V, -V' - 6, "n-,,
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f 2 r~~ r ~in~dd)=(1" 47rn(fl + l)mI~6n 16

f'wf -. sine dO d4) = o.)- W"Lb (17)

In order to satisfy eq. (5), the electric field must be entirely spheroidal, thusly:
00 00

mL-oo n0O

where

8E:_ (ri E'1(r).9 8s:O) _ En (r) 8Sn,"(O)). (19)iO cr Sr 89 rsin9 4

Eqs. (18) - (19) are, of course, equivalent to stating that the electric field E must
be derivable from a scalar potential.

After substituting eq. (7) into eq. (6) and taking the divergence, one obtains

- - aE ) = 0 -j..(20)

The substitution of eqs. (18) - (19) into eq. (20), along with the application of
eq. (15), yields

,d2En_- + 1)a En +~ 2Um _ n(n + 1) V.n (21)
d 2  Er d dr; 2  

- dr rr

where it- is assumed that the source current density, . , is a spheroidal vector of
the form

00 00

j. F, in"L(22)
m=-oo n=0

where

jn'n + U r - (r) S' n +0, -0) f + 'j" -,(r) (23)
n n 09 sinG 84)

and the conductivity, a , is assumed to be a function of r only. In fact, the con-
ductivity exhibits a weak dependence on things like local field strength, angle, and
wa~ter vapour content of the air. The assumption that the conductivity a is a func-
tion only of r seems to be adequate at late times, at least as a first approximation
(Grover 1980).

Using eqs. (2),(6) - (17), and the assumption that i. is entirely spheroidal, one
finds that

00 0

m=-00 n=O

where

nA'r '94) An (r) aSn!(9, 0)). A~'() aS: (0,4,
-a O n(,O r 8990 - + *O 84 (25)
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B. (r)____ as" a )0S., ,)B'(r,') 8S'(9,4,) + B-,(r) ,. , (26)B sin 0 o40 n26 ad

The equations for the radial dependence of the field, A' and B' , are given by

d2A'. 2 dA- n(n +1)
dr + + 2dA - n l An =0, (27)

dB'" +-B m  --- +-Ef'. 0 ,,d + 2 = -- O dE', + 2E,-, m- AIO (', + n(n + 1)V,,'). (28)

Grover (1980) and others (e.g. Hodgdon 1984) have derived similar equations,
with the important difference that n in eq. (21) was only allowed to assume odd
values. This was done in order to satisfy the boundary condition that the radial
component, E, , of the electric field must vanish identically over the surface of the
Earth. However, as can be seen, if Um and Vn, are not identically zero for all even n,
this ignores those multipoles excited by those current densities with even values of
n. Since, in fact, the even multipoles of J. are not all zero, another way of satisfying
the boundary conditions must exist.

The boundary conditions on the fields across the boundary separating two re-
gions, 1 and 2, are given by:

a Xx 0, (29)

,4. (B2 - ) =U, (30)
a" (F2 - Aj) =0, (31)

a X (.#2 - 1 ) =K, (32)

(Jackson 1962, Stratton 1941). In eqs. (29) - (32), the variables with subscript 1
refer to the region 1, and those with with subscript 2 refer to the region 2. W is the
surface charge density on the boundary between the regions, k the surface current
density, and h the unit normal going from region 1 to region 2.

If the Earth is assumed to be a perfect conductor, the electric fields must vanish
within it. Hodgdon (1984) has pointed out that sufficiently close to an explosion,
the conductivity of the air first approaches and then surpasses that of the Earth.
This implies that there is second region, distinct from the Earth, over which the
boundary conditions, eqs. (29) - (32), must be applied: the region around the blast
site in which the air is so highly ionised that it can be considered a perfect conductor.
For simplicity, it will be assumed that this region is a hemisphere centred at r = 0
and with a radius r0. Within that hemisphere, the electric and magnetic fields
must vanish as well as within the Earth. At this stage, it will be assumed that the
Earth can be treated as an infinite plane, located at 0 = 900, and which is perfectly
conducting for all r > r0. It will also be assumed that all physical processes involved
in the explosion and the field are symmetrical in the x - y plane and hence that the
resulting fields are independent of the 4, co-ordinate. This implies that the angular
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order m of the surface spherical harmonics in eqs. (19) - (21) is always 0, and hence
that one is left only with a summation over the rank n.

Accordingly, the boundary conditions at the edge of the perfectly conducting
hemisphere around the blast site become:

x E2i r,=o =0, (33)

F"2 lr=ro = t 2lr=ro ' (34)

*b 2  o =0, (35)

X 921,=ro = K21. (36)

In eqs. (33) - (36), w2 is the surface charge density in the air, K 2 the surface current
density in the air, and all other variables with a subscript 2 are to be understood
to take those values which they would have in the air. The outward normal h to
the hemisphere is the unit vector f.

The application of eqs. (15) - (17) to eqs. (33) - (36) yields:

E°,I _o = 0, (37)

dE° - (2n + 1) f U2 (ro,) PO(cos)sin0dO (38)

__ 0(39)
dr d----r0,

B° - 2n+1 fo' ! 2 (ro,). SP, sin0 dO, (40)
BO r='o = 2n(n + 1) 0 n

for n $ 0. Equation (27) for A' is simply the radial part of Laplace's equation in
spherical co-ordinates, whose solution is given by

A ° = anrn + bnr - (n+ , ) ,  (41)

where an and bn are constants to be determined by the boundary conditions. Equa-
tion (41), taken in conjunction with eq. (39) and the requirement that the magnetic
field be 0 as r -+ oo implies that a, = bn = 0. This in turn implies that there is
no spheroidal magnetic field during the quasi-static phase of EMP, only a torsional
one.

The boundary conditions eqs. (33) - (36) degenerate even further for the case
of the spherically symmetric or monopole part of the field ( i.e. for n = 0). There
can be no magnetic field associated with this part of the field, and so eq. (36) must
be satisfied identically by insisting that the spherically symmetric part of K2 be
0. Equation (33) is automatically satisfied, leaving eq. (34) as the sole remaining
condition.
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The corresponding boundary conditions along the surface of a perfectly con-
ducting Earth are:

A o, (42)

i" D210=90 " , (43)

ii B 2 =1o =0 , (44)

, X'2I 1=o90 . - 1. (45)

In eqs. (42) - (45), w, is the surface charge density density along the surface of the
Earth, K, the surface current density along the Earth. Again, the variables with
a subscript 2 are to be evaluated in the air. Incidentally, for explosions over sea
water, the surface of the Earth can be considered to be a perfect conductor much
closer to the explosion site than would be the case for an explosion over soil.

The outward normal to the surface of the Earth is the unit vector along the z
axis. Using this, and substituting eqs. (18), (19), (24), (25) and (26) into eqs. (42) -

(45), one obtains

00 ( E 0 dP~sin0-d-r Pn + cosOE n - = 0, (46)
drO r dOj9=0

SdE - EdPn) = __1 (47)
n=0 dr r dO C=90s B = +0 C ,=900

F, sinO nO -r + =oO3.() P r 0 ((91 " r)r + (k,1" b)b). (48)

n&:0 dOdO1=900

Equation (44) is automatically satisfied for m = 0. The summations over the
odd Legendre polynomials P vanish, leaving only the summations over the even
polynomials to be satisfied, thusly:

00 (2n)! dE 0F,(- 1)2"n !) 2d2 =0o, (49)
t2O 

2 "(n dr

E(.l)f.+1(2n +2)(2n + 1)! E2 0l+l I c (50)
n=O 2(2n+2) ((n + 1)!)2 r CO

00 +2 (2n + 2)(2n + 1)!= (51)
"n + 2(2n+2)((n + 1)!)2 2n+

The usual practice (Hodgdon 1984, Grover 1980) has been to satisfy the boundarydE0

condition by insisting dr = - - 0 throughout all space for the even spherical
harmonics. As was indicated above, this seems unlikely if the current density de-
pends to some degree upon the even spherical harmonics. What seems more likely
is that the non-zero field at the surface of the Earth draws charges there which
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arrange themselves in such a fashion so as to cancel the inducing field at the sur-
face, but not necessarily throughout all space. Essentially, Eqs. (49) - (51) impose
consistency cond'tions on the source current 1,.

To sum up: in this section we have derived the equations governing the electric
fields induced by electric currents in the atmosphere from explosions of various
types. We have shown how the fields may be decomposed into multipole fields
and that where the source and conduction currents are dependent upon particular
multipoles, electric fields which are dependent on those multipoles are created. From
this it follows that in general, both even and odd multipole fields exist as a result
of an explosion.

Where the conductivity of the Earth is sufficiently high that it may be consid-
ered a perfect conductor with respect to the air, the boundary condition on the field
requires that the component of the field along the ground must vanish. For the odd
multipoles of the field, this condition is satisfied automatically. For the even mul-
tipoles, it is satisfied by the appearance of a surface charge density which produces
a field which counteracts the original field at the surface of the Earth. However,
the field which results from the sum of these two fields need not be zero everywhere
else, and hence the even multipole fields can contribute to the total field.

3 Numerical Methods

Before one attempts numerical solutions of the field equations, eqs. (21) and (28),
it is necessary to know the conductivity a , and the source currents J. . Both of
these depend upon the precise nature of the ionisation process. Since the most
interesting cases from a theoretical standpoint occur when the fields are produced
by a nuclear explosion, it was decided to choose expressions for a and J. appropriate
to a thermonuclear explosion. Hence, at this point the further development of the
field equations will be confined to the specific case of the fields generated by a
thermonuclear explosion.

The total atmospheric conductivity is composed of two parts: an ionic and an
electronic conductivity. Each Compton recoil electron produces about about thirty
thousand ion-electron pairs. At early times, the electronic conductivity dominates;
at late times, the ionic dominates. The expression for the total conductivity is hence

=a, + oa (52)

where a, , the electronic conductivity, is given by

a. -= e I.S (53)

and a1 , the ionic conductivity, is given by

a= 2e.j (54)
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(Downey 1983, Wyatt 1980, Grover 1980). In eqs. (53) and (54) e is the charge on
the electron, At, the electron mobility, S the local ionisation rate, a, the electron I
attachment rate, /, the ionic mobility, and "yi the ion-ion recombination rate. The
ionisation rate S is assumed to have the form

exp(-r/A) (55)

where A is the effective mean free path of the gamma rays, So is a constant for
a given time and yield, and r is, as above, the radial co-ordinate of a spherical
co-ordinate system centred at the blast site.

For convenience, we shall define

Fo(t) = -3.9 x 10-2 Y N. exp(-8.33 x 102 t),

Go(t) = 8.2 x 10- 2 1 Yo N. exp(-8.33 x 10 2 t),

Ho(t) = -2.8 x 10-2 3 Yo N exp(-16.7t),

F(r,t) = Fot)[exp(-2.65 x 10-por) - exp(-1.04 x 10-4 por)]r2

Gr,t) = GoLeXp(-4.61 x 10-tpor), (56)

H(r,t) = -oit_._))[ex( -2.20 x 10-Spot)- exp(-4.78 x 10 - spor)]r
2

X(r,t) = F(r,t) + H(r,t),

Y(r,t) = 16F(r,t) + 1.3H(r,t),

Q(r,t) G(r,t),

Z(r,t) = -G(r,t).

In terms of the functions defined in eq. (56), the source current densities are
given by

J, = F(r,t)(1 + 16cos 0), (57)

Jo = G(r,t)(1 -cos8),

for ground capture sources, and

J = H(r,t)(1 + 1.3 cos 0), (58)
Je =0, ,

for air capture sources (Downey 1983). In eqs. (56) - (58), Yo is the total yield in
kilotons, N. is the number of neutrons/ kiloton, p0 is the air density in mg/cm3,

r is the radial distance from the blast in centimetres, 0 is the polar angle, t the
retarded time in seconds, J, the radial current density in abamps/cm 2 , and Jo the
polar current density in abamps/cm. The total current density at any retarded
time t must be the vector sum of eqs. (57) - (58) . Hence, the components of the
source current density are

J,= X(r,t) + Y(r,t) cos0, (59)
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Jo = Q(r, t) + Z(r,t) cos0. (60)

Using eqs. (56) - (59) and eqs. (15) - (17) one finds that:

U.° = x(r),
Vr.00 = 0,
Uj. = Y(r),

41. = - Q(,.),

Uj*. =0,n > 1,V o (2n + l) r( n /2

V0 2n+n r Z (_1) (2n - 2k)!(n - 2k)
Jo) 2(n+) . 22n-2kk(n - 'c)!(n - 2k + 2) ((n/2 - k)!)2  (61)

for n even , n > 2,

V 0 (2n + 1)7r O-1(/2 (2n- 2k)!
J.- 2n ~rn E (i)k (2n-2k) ! 2

o n n+ 1) _ 2 n__k!(n - k)! (((n - 1)/2 - k)!) (n - 2k + 1)

for n odd , n > 3.

By substituting eq. (61) back into eqs. (21) and (28), it is now possible to solve
numerically for the radial part of the electric potential and the electric and magnetic
fields. It should, however, be noted that eq. (61) must be converted into amps/m 2 in
order to be consistent with the expression for the conductivity. It is generally most
convenient in numerical solutions of differential equations to use scaling factors to
form dimensionless equations. By defining

dE _ ML

dr = Y1 QT '

ML 
2

E = Y QT,

Bo  Q

Ito TL
r = r*L,

t = t*T, (62)

*TQ
2

o= ML a '

U..o = (u. o Q

= (U;) TL 2'

n TL3 '

where

Q = LT(F(r))

485



M=L 3T _F.)'/ (63)
+dU., 2 0 n(n + 1).

r n r

and L , T , M, and Q are the scaling factors in MKS units for length, time, mass
and electric charge, respectively, with ro being the smallest value of r that appears
in the integration, one is allowed to specify any two of L , T , M and Q as free
parameters. It was found to be most convenient to specify T - 16.7 secs, and L
as twice the maximum value of r used in the integration. Using the dimensionless
quantities defined above, the field equations, eqs. (21) and (28) become

-- - * ) Y + n( +l) +--

dr" ( * r ' r-  or*

dy2 = yI'  (64)

de
d ys * * 2 y 3 1 - o +_+ ;
dr - n(n + 1) +rl r* n(n + 1) (U' + n(n +.

Equations (64) form a system of linear differential equations which can most
easily be solved by means of the propagator matrix formalism (Gilbert and Backus
1966, Smylie and Mansinha 1971). In a system of n linear homogeneous differential
equations

df(r) = A(r) f 1(r), (65)
dr

where A(r) is the matrix of coefficients, an n x n matrix PF(r) is called a fundamental
matrix of the system eq. (65) if it satisfies the condition

d k(r) -
dr = A(r). .F(r), (66)
dr

and has an inverse for every r in its domain. Now, F(r) = P(r, ri) is called the
propagator matrix of eq. (65) if

F(r,) P(r,,r,) = I (67)

where I is the identity matrix.
It follows (Gilbert and Backus 1966), among other things, that

P(ri,r,_2 ) = P(r,,r,_,), - (ri)1,r,_,),

P(r,,r,_,) = P-1 (r, ,r,), (68)
7(r) = P(r,) -(r,),

where f(r) is the solution to eq. (65) and i(r) is the solution at r = ri.

6E6

"'" y ," '"f •r , " )'.'.
'

' a " V w ' = w 65-



Now, the system of non-homogeneous equations,

df(r) + i+ (69)
dr(

can be shown to have the solution

1(r) =L (rf) . d + P(r,r,). f(r,) (70)

where 7(ri) is a solution to the non-homogeneous system , eq. (69). The boundary
conditions eqs. (37) - (40) and (49) - (51) would overdetermine the system of equa-
tions (64) if w2, t, K, and K2 were known. Since they are not, the remaining
boundary conditions are sufficient, and the unknown functions can be calculated
from the general solution to eq. (64). In terms of the variables defined in eq. (62),
the relevant boundary conditions are:

Y2Ir=ro =0, (71)

(2n)! (2-)

n 22n(n!)2'

where y?")is the solution to the first of eqs.(64) associated with the 2nth harmonic.
The boundary condition eq. (71) is satisfied if the initial solution, 9(r0 ) is chosen

thusly:

(rO) = 0 (73)

It was decided to set r0 = .4 km. At that point, the conductivity a of the
air is approximately equal to that which is typical for the Earth's surface _ 10- 3

(ohms-meter) - ' . In order to be consistent with the boundary conditions applied at
the surface of the Earth, the air conductivity a should be regarded as infinite there,
and hence the boundary conditions, eqs. (37) - (40), apply. The constants ic, and

dE0
r-2 are determined by the condition that d  -* 0 and Bo --+ 0 as r -- co. Since the
fields were found to be small for r > 5.0 kin, (Hodgdon 1984, Downey 1983), it was
decided to apply the boundary condition yj = = = 0 at values of r greater than
that. For example, for n = 1, the boundary conditions were applied at r = 8.1 kin,
for n = 2 at r = 7.0 km, and so on. As a check, the integration was reperformed
ab initio and extended out roughly twice as far, at which point new values for r.,
and X2 were calculated. Typically, difference between the two values for the fields
was found to be < 1% for r < 4.0 km, rising to about 3% at r = 6.0 km. It should
be noted that the use of the boundary condition at infinity at a finite value of r
implies that Y2 and hence the tangential field need not be zero there, as in fact it
is not in general. However, its magnitude is sufficiently small at the point at which
the boundary condition is applied that it may be neglected.
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It should be noted that the equations developed above must be modified slightly
when n = 0 . In that case, -= 0, and eq. (28) becomes

dEg = (74)
dr a

As one would have expected, eq. (74) can also be obtained from the integration of
eq. (21) with n = 0.

Equations (64) were solved using the propagator matrix formalism of eqs. (65) -
(70) and a four-point Runge-Kutta algorithm with automatic error controls to

-obtain the propagator matrix. The expression fg' P(r, ) . g(C) dC was evaluated
using Simpson's second rule with various base point spacings and an algorithm
in which global errors were controlled by halving the base point spacing until the
largest difference between successive iterations was less than .2 kV/m in the electric
fields for n = 1 and less than .02 kV/m for all other multipoles. The Runge-Kutta
routines were checked for convergence by decreasing the upper error bound from
10- 1 to 10-10.

4 Numerical Results and Analysis

Figures 2-5 show the radial and tangential electric fields, electric potential and
torsional magnetic field associated with the dipole (i.e. for n = 1 in eqs. (21), (27)
and (28)) as a function of the radial co-ordinate r at various angles for a nuclear
explosion of 10 megatons evaluated at a retarded time of 1 msec after the blast.
Unless otherwise stated, it will henceforth be assumed that all of the fields discussed
in this section are evaluated at the same retarded time of 1 msec, and that the
source currents are those generated by a 10 megaton thermonuclear explosion (i.e.
Yo = 10 in eqs. (56)). One also needs to have values for So, po, N., a,, A., -tr,
and js&. Following Grover (1980), So in eq. (55) was set to 1.1 x 1030 ion-pairs/m-
sec, a value appropriate to a 10 megaton burst. The values assumed for the other
quantities were also those chosen by Grover (1980):

N. = 2.0 x 1023 neutron/kT,

p0 = 1.225 mg/cm3 ,
a, = 1.5 x 108 sec- 1 ,

=e .25 (m 2/V-sec),

S= 2.0 x 10 - 12 m3/sec,
IA = 2.5 x 10- 4 (M2/V-sec).

In reality, these values depend upon things like the field strength, air density and
fraction of water vapour present. However, the average values will suffice as a first
approximation. The gamma dose attenuation length A was set to 320 metres for all
calculations. Unless otherwise stated, r0 will be assumed to be .4 km throughout.
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Figure 6 shows the monopole electric field (i.e. for n = 0 in eq. (21)). Figures
7-10 show the quadrapole fields and potential (i.e. for n = 2 in eqs. (21), (27) and
(28)). Figures 11-14 show the fields and potential for the sextopole fields (i.e. for
n = 3 in eqs. (21), (27) and (28)). The corresponding graphs for the higher order
multipoles show essentially the same behaviour as those for n = 3 and so are not
reproduced here.

These graphs demonstrate several features of interest about the quasi-static
electric and magnetic fields. Firstly, it is evident that the magnetic fields produced
by the source currents are relatively weak. The strongest magnetic field is the one
associated with the dipole (n = 1 multipole ), which has a maximum of only - 20%
of the typical strength of the geomagnetic field. This justifies a posteriori the neglect
of self- consistent effects in the calculation of the fields, since such effects could only
be a small perturbation to the main fields.

As one would have expected from the expressions for the source current densities,
eqs. (61), the n = 1 fields dominate the others. However, both the n = 0 field and
the higher order multipoles have non-negligible field strengths, especially close to
the origin. For example, the n = 0 electric field has a peak value of - 10% of the
n = 1 field, and the n = 2 field a peak value of - 4% of the n = 1 field.

Figures 15-16 show the sums of the radial and tangential electric fields for the
multipoles from n = 0 to n = 5. As expected, the dipole (n = 1) field is the.
dominant influence, for. both the radial and tangential fields, except for the total
radial field at 9 =900. There, since all of the multipoles with odd values of n are
identically zero, the multipoles for even values of n are the only non-zero fields.

That, of course, presents a problem since, from eq. (49), the sum of the radial
fields must be zero along the surface of the Earth i.e. for 0 = 90*. Figure 17 shows
the degree to which this consistency condition is violated. The solid line is the sum
of the radial fields at 0 = 908 for n = 0,2,4, with the n = 0 field being calculated
using eq. (74). The dotted line shows the value which the n = 0 field would have to
have in order to cancel the n = 2 and n = 4 fields at 9 = 90 ° . Since multipoles of
order higher than 4 add relatively little to the total fields, their contributions have
been neglected.

From the preceding discussion, it is clear that the expressions for the source
current densities, eqs. (56) - (60), or for the conductivity, eqs. (52) - (55), or both,
are inconsistent as they stand and must be altered. The approach taken in Heaton
(1987) was to assume that the expressions for the source current densities and
conductivities were correct, but that the boundary conditions were satisfied at the
surface of the Earth by an induced electric potential. While possible in principle,
this method leads to considerable numerical difficulties. An alternative approach
would be to consider the physics of the situation more closely. Equations (52) -
(60) have been derived from fits to experimental data (Downey 1983); accordingly,
it is reasonable to seek the solution which changes them the least. An inspection
of eqs. (59) - (60) reveals that X(r,t) and Z(r,t) have the least influence on the
final field strengths, and of those two, X(r) affects only the value of the n = 0
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Table 1: Comparisons of Calculated EMP Electric Fields

Radius Total Field Total Field Total Field Total Field Total Field
0=0 9=0 0=0 9=0

(Wyatt 1980) (Grover 1980) (Downey 1983) (Heaton 1987) (Present Work)
(M) (kV/rn) (kV/m) (kV/m) (kV/m) (kV/m)

500 390 45 23 304 100

900 164 21 19 128 58

1300 114 15 13 63 25

field. Accordingly, it seems most reasonable to estimate the true field strength by
replacing the value of X(r, t) given in eq. (56) by aA (r) where A (r) is the function
graphed by the dotted line in Fig. 17.

Figures 18-19 show the total fields obtained by replacing the value of the n = 0
field as given by eq. (74) by A(r) and summing from n = 0 to n = 5, as before. A
comparison of Figs. 15 and 18 shows that the effect of ensuring that the boundary
conditions along the surface of the Earth are satisfied in this fashion is to decrease
the peak value of the field by - 9%.

One test of any model of EMP is whether it is capable of producing fields of
sufficient intensity, usually regarded as being in excess of 100 kV/m, to cause the
lightning observed during several tests. As can be seen from Figs. 2-4, the field for
the n = 1 multipole reaches a maximum of - 118 kV/m at .4 km and falls to less
than 1 kV/m at 5.1 km. It is well known (e.g. Hodgdon 1984, Longmire and Gilbert
1980) that the dominant field is dipolar because of the cos 0 dependence of the
current density. Hence, the fields displayed in Figs. 2-4 should constitute the greater
part of the total electric field. It is encouraging that the magnitudes calculated are
around those needed to produce nuclear lightning over some of the range in which
they were observed (900 - 1400 m from the blast) at time scales of 1 msec (Wyatt
1980). Wyatt's values for the fields are listed in Table 1, and compared with the
ones obtained here, as well as with Heaton's (1987), Downey's (1983) and Grover's
(1980) values for the total fields. These values are necessarily adequate only for
order of magnitude comparisons, because of the angular dependence of some of the
field values. As can be seen, the results from the current work are considerably larger
than either Grover's or Downey's results, and considerably smaller than Wyatt's or
Heaton's (1987) values, reaching the 100 kV/m level only at 500 m. In Downey's
and Grover's cases, the results are likely attributable to the different conductivity
models used. Downey used detailed fits to the expected form of the conductivity,
taking into account the air chemistry, as opposed to Grover's more approximate
model. Even so, Downey only found a variation of 10% - 30% between his values and
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Grover's. The major reason for the variation in the calculations of the magnitudes
of the electric fields seems to be the boundary conditions at r0 . Grover and Downey
felt that the condition that the field should vanish at r = 0 required that both the
radial and tangential electric fields be zero at ro, the point at which the integration
is begun. While this satisfies the boundary conditions there, the condition is rather
more restrictive than required. Wyatt neglected the boundary conditions at ro as did
Heaton (1987). These last two sets of results, then, assume that the region of very
high conductivity was sufficiently far from the region of interest that its effects on the
field would be insignificant. The results in this paper are intermediate between the
two groups of results, predicting fields lower than those of Wyatt and Heaton (1987)
but higher than those of Grover and Downey. The boundary conditions near the
explosion site chosen in this paper are more restrictive than Wyatt's and Heaton's
(1987) but less restrictive than Grover's and Downey's. Wyatt and Heaton (1987)
essentially applied no boundary conditions to the fields near the explosion while
Grover and Downey required that both the radial and tangential components of
the electric field vanish near the explosion site. The boundary conditions developed
here for that region, eqs. (37) - (40), require that only the tangential electric field
vanish near the explosion site. All this implies that the inner boundary conditions,
eqs. (37) - (40), have a significant effect on the magnitudes of the fields, even far from
the perfectly conducting region, contrary to the assumptions of Wyatt and Heaton
(1987). This is borne out by an examination of the effects that the conductivities of
the Earth and the perfectly conducting hemisphere around the explosion site have
on the magnitude and location of the maximum electric field strength. When, as a
test, ro was successively set to several different values, the maximum value of the
n = 1 electric field was reduced in all cases. For ro = .5 km the maximum field
strength was 116 kV/m and for r0 = .6 kin, it was 100 kV/m. For both cases,
the maximum occurred at r0. When the value of r0 was decreased, the maximum
electric field strength decreased more noticeably, and was not always located at r0.
For example, for r0 = .01 kin, the maximum field strength was 78 kV/m at .41 kin,
with the field strength at r0 being only 28 kV/m. With r0 = .1 kin, the maximum
field strength was 80 kV/m at .4 kin, and at r0 , the field strength was 57 kV/m. It
should be noted that the expressions for the conductivity, eqs. (52) - (55), are not
really valid for r < .4 kin, and so the results within that region should be regarded
merely as being suggestive rather than definitive.

These results can best be understood by a consideration of the conductivity and
source current models employed. Increasing the value of r0 is essentially equivalent
to decreasing the ground conductivity. The maximum value of the fields decreased
slightly when this was done because that part of the source current density at values
of r < r0 was not included in the calculation, thus reducing the total field strength.
Decreasing the value of r0 is equivalent to increasing the conductivity of the ground.
The vanishing of the tangential electric field at r0 forces a proportionately smaller
discontinuity in the potential as ro decreases, hence producing a weaker radial field
there. One would expect the air around the explosion site to be divided into roughly
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three regions: a completely ionised one, a partially ionised one, and an almost com-
pletely unionised one. The boundaries between these regions will obviously change
at different rates with respect to time. The unionised and partially ionised regions
will move inwards, and the completely ionised region will eventually vanish alto-
gether. The results obtained above suggest that the widths of these three zones
and the structure of the transitions from one to the other are crucial for the deter-
mination of the magnitudes of the fields. Since the maximum values of the fields
are near to those required to initiate dielectric breakdown in the air, it may be
that relatively small changes in atmospheric or ground properties might produce
conditions favourable for the occurrence of nuclear lightning in one instance, and
unfavourable in the next.

5 Conclusions

In this work, it has been demonstrated that the quasi-static electric fields produced
by an explosion contain components that depend on both the odd and even surface
spherical harmonics, and that this remains true even if the explosion occurs near a
good conductor.

Expressions for the excitation function for the EMP in terms of the surface
spherical harmonics were obtained, and used, along with a simple model of ionic
and electronic conductivity, to obtain values for the electric and magnetic fields
generated by a typical explosion. A propagator matrix algorithm for solving the
EMP equations was developed. Using this algorithm, it was demonstrated that the
dominant electric and magnetic fields are dipoles, but that the contribution of the
other multipole fields to the total field is significant. In particular, the calculated
values of the field were near those which are expected to produce the lightning
which has been observed to accompany nuclear explosions. The results obtained
here suggest that the detailed structure of the ionised regions around the explosion
site is crucial to the existence of nuclear lightning, and that relatively small changes
in a few parameters might be sufficient to permit its formation.

It is shown that the values which were used for the source currents lead to values
of the electric fields which do not satisfy the boundary conditions over the surface
of the Earth, and hence should be modified to take into account the boundary
conditions on the fields.

Efforts are currently being made to extend this work by incorporating more
accurate, self-consistent models for the conductivity and source currents, perhaps
by the introduction of Monte Carlo techniques into the algorithms. As well, it is
planned to modify the boundary conditions to take account of the large but finite
conductivities in the Earth and around the blast site, and extend the propagator
matrix formalism to the time-dependent case.
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Figure 1: Relation of LP Fields to the Earth
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SPLINE-BASED FINITE-ELEMENT METHOD FOR SOLVING
A STEFAN'S PROBLEM IN A FINITE DOMAIN - FORMULATION

Shunsuke Takagi
U.S. Army Cold Regions Research and Engineering Laboratory

Hanover, NH 03755

ABSTRACT. The finite-element method presented in this paper has two
features. First, a cubic spline is included in the basis functions; the
advantage of the inclusion has not yet been examined. Second, space coordi-
nates only are used to determine the temperature distribution. The time-
coordinate increment of the phase front corresponding to the space-coordinate
increment can be determined consequently. In our problem, where the final
position of the phase front may be determined at the start of the solution,
the solution method using a space-coordinate sequence is preferred to the one
using a time-coordinate sequence. This numerical method can work smoothly
even for an extremely large time.

Analytical formulation only is presented in this paper.

I. INTRODUCTION. Instead of the two end conditions usually employed
for determining the two extraneous unknowns, Sections I introduces two
internal conditions and develops a cubic spline without end conditions.
Section Ilthen demonstrates that a cubic spline interpolating the unknown
temperatures produces a set of roof-shaped basis functions. Equidistant mesh
points are used for the derivation.

We have applied this finite element method for solving the freezing of
water in a finite domain. The interface is always chosen as a mesh point.
The ice and water domains are divided into equilength subregions, with n and
m internal points, respectively, where n and m may be any integers larger
than or equal to 2. Therefore, the mesh points are never fixed in this
method.

Section III states the problem to be solved. The temperature distribu-
tions are determined in Section IV by using the interfacial coordinate &
in place of time t. On the assumption that the temperature distributions at
the time substitute & are known, Section V finds the simultaneous equations
for the unknown temperatures at the time substitute &+d , showing that they
are quadratic. Application of Newton's approximation reduces solving a set
of simultaneous quadratic equations to sequentially solving sets of
simultaneous linear equations representing tangent planes of the quadratics.
The time-coordinate increment dt corresponding to the space-coordinate
increment d9 can be found by use of the expression of dW/dt.

In our problem, where the terminal temperatures are both given, the
final interfacial position can be found at the start of the solution. We can
choose, therefore, an appropriate magnitude of increment d& at any stage of
the solution. The solution method using a space-coordinate sequence is more
convenient in our problem than the customary method using a time-coordinate
sequence. It was experienced in the numerical computation of the analytical
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solution (Ref. 1) that the former works smoothly, even for an extremely large
time.

Analysis only is presented in this paper. The advantage of using a
spline function in a finite-element method has yet to be clarified.

II. CUBIC SPLINE WITHOUT END CONDITIONS. Instead of the two end
conditions that are usually stipulated, we adopt two internal conditions,

yx - 0 x+ 0,

y,,,ff y ' "t
I - o 1_

for determining a cubic spline that passes through equally spaced points

PO(X0 $ y 0),•.. PN(xN , yN). Selecting Y11 , denoted by z,, at point Pi
as unknowns (i - 0,•.., N), the two internal conditions become

z 0 - 2z 1 + z 2 - 0

ZN 2 - 2zN 1 + zN -0

In other words, we adopt a single cubic passing through points P0 , P1 , P2
and another through points PN-2, PN-1, PN" The minimum of N in this stipula-
tion, therefore, is 4, if the two cubics should not be the same. If the two
cubics can coincide, N may be 3.

Thus determined, the equations for zi are:

z0 - 2z1 + z2 i-O [0]0

z0 + 4z 1 + z2 ' A1  [1]

z + 4z 2 + z3 - A2  (21

SZN- 3 + 4ZN-2 + ZN-1 - AN- 2  [N-21

zN- 2 + 4 zN-1 +zN - AN- [N-1]

ZN-2 - 2ZN-1 + zN 0, [N]

where
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Ai 6(y 1  2y- + y/A) 1

for ± ,.. N-1. The equal distance between two adjacent mesh points is
denoted by Ax.

The general solution of the above equations can be found for N > 6.
Define

f, - 1/6 , f 2 = I, f3 4

and

recursively for i > 4. The difference equation (2) is solved to:

f- (11/2V3){1(2 + V3' - (2 - 3)i+1}

[(i-2)/2] --

- M ( i22p + )2 P P3 (3)

which happens to be valid for i > 2.

When N - 2r with r > 3, we may, as proved below, transform the

uiulutaneous equations 'to:

ZO0 - 2z 1 - z 2 [0il

z1af A [1l

21 2-

f 3 z2 +f 2 z3  - (-1)i f A 1 12]'

f rz r- + fer-1 Zr r ~ ( - f A i I-
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zrI+ 4z r+ z -+1A r[r)'

f r1 r+frz r+1 rA -

2 2-1
f2 zN-3+ 3 ZN-2  - (-I) f, A Ni [N4-21'

Z N-I -f, A4**I [N-1]'

z 2z N 1 -z N-2  [ NJ'

The relation (0]' is found from [0]. The relation (1i' is found by
subtracting [0] from [1]. Substituting the relation (1]' into [2] we find
[21' Assume that the relation

f Z (-f k- 'Ak+1 ki k Zk+1 i

is valid for k > 2. Substituting zk by

ZkC 4z k+1 -Zk+ 2 + A k+I

we find

k+1I +-
(4f k+I - f k)z k+1 + f k 1 Zk+2 - (-I)k+ f Ai

Theref ore if (2) is true, Er-li' must also be true. We apply the same
procedure from below starting at [N-1]' , and find [r+l]'

We solve the three equations in the middle for Zr-.. 'Zr ,and zr.1

Then the rest of the unknowns can be successively determined. We express the
solution in terms of a (N4+1) by (14+1) matrix ak defined byi

(Ax) 2 z Nk(4
0
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Here a set-theoretic notation (Ref. 2,3) is used to show that i is a member
of the set of numbers enclosed in a pair of braces. Similar notations will
be used henceforth. The solution is shown in Appendix A.

When N - 2r + I with r > 3, we transform the equations [0 ... [NJ to

z0  a 2z1 - z0  (0''

z "f A [1]'

2 2-
f 3z2 + f2 3  (_)2i f A [2]''

-i

f r+ zr + fr z r+1 " (-)r-i f A

fzzf+f r (_1 )r-i f - [r+IJ"
r r r+1 Z r+ A i -i

2 2
f 2z N- + f(3 1N2i f, A N-i (N-21''

ZN- a f 1 AN- 1 [NI'

z- 2zNI ZN 2  [N''
N

Following the same procedure as the preceding, we have in this case the
two equations in the middle, which we solve for zr and Zr+1. Then the
rest of the unknowns can be successively determined.
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k
The result is shown in Appendix A in terms of the matrix aj. The cases

N - 3, 4 and 5 are also listed in Appendix A. The reason f or the restriction
r > 3 is exhibited in the Appendix.

III. BASIS FUCTIONS. We denote the cubic spline in an interval
[xi. xilj by y(xC&[xj. x±.gli). Given yi, yi+i' zi, zi+i., it is formulated
(Ref. 4),

-xc- xi x-x+1
y~E ~ i+x~1 i) , yj Ax - + -A

(AX)2 lxi+l -x xi+ - x

6 i' Ax~ L~ ) 3 -5

(,&)Z z x -xi ,x- i3fox&[x
6 i+i x I1 o x&x AX xi+1

-O 0 for x4 [xi , xi+1]I

A pair of brackets enclosing two points, like those at right above, mean a
closed interval spanned by the points.

The cubic spline in the whole domain (x0 , i1 is given by

N-i
y(xe- x 0'xl' 1 y(xCe[x,xi+ 1). (6)

Define

M~x~ 1 1 1~ [xi - - x i+1 -j i( 6 [+ Ax ) af

i i1Ax i)

-O for x#1[xi'xi+11

where

Jefo0,..., NJ ie-[o,...., N-1}1

Then (6) may become
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N-I i -x x-x N
Y(XG ,[Xo' 2) " N {Y 1 A + AX + I y p4 (x)}

The first derivatives of p (x) are in general discontinuous at the mesh S

points. We rewrite the above to

N
Y(xC[Xo' x1N1) - 1 yi Bi) (8)

i-O

by defining the basis functions

Bx-Ai)- i 1_x&(xi x) + (xi+1 x +s (x) Ax (C( i ,1 xi X x C-( , xi+1 )

+ P plC [xh, Xh+I) 9 )
h-0

with a convention that

(- x

Ax -'X- l x z0) -0
and (10)

-xN+1 - x
(xEr(x, x + )  "0

and another that the value at x - xi should be found as the limit
x + xi - 0 or x + xi + 0, where a pair of parentheses enclosing two points
mean an open interval spanned by them. The basis function satisfies

i

where 85 is Kronecker's 8

IV. PROBLEM. We consider freezing of water in a finite domain 0 < X <
L. The boundary temperatures TA at X - 0 and TB at X - X are constant,
the latter being also the initial temperature. They satisfy the condition,
TA < TF  TB , where TI is the phase change temperature.

At t - 0, ice emerges at X - 0, whose temperature we express by
TI(X, Kit) , where C1 is the thermal diffusivity of the ice. The phase front
is denoted by s(t). The temperature of the water is expressed by TW(X,Iwt).
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We introduce three nondimensional coordinates and one nondimensional
constant,

x-X/t, r = It/12, -s(t)/L, a- /t: . (12)

Then the heat equations may become:

T , d 32TI -0
3C d'r ax

and (13)

3 9 T a X
3T dt -1 -2T 0

They are subject to the conditions:

T (0) - TA (14.1)

TW(1) - TB (14.2)

T () - Tw(g) - TF (14.3)

(0) - 0 (14.4)

T(x,0) - T' (14.5)

d - (C /L) ,I- F- (,C--L) , (14.6)

where CI and CW are heat contents of ice and water, respectively, and L
is the latent heat.

V. TEMPERATURES. Choosing the phase front as a mesh point, we insert
equally spaced n and m internal mesh points in the ice and water domains,
creating N - n + 1 and M - m + I subintervals, respectively. Substituting
for the time coordinate r, we express the unknown temperatures at the
internal mesh points by Ti(g), where indexes i - 1,..., n are for the ice
and indexes i - n+l,..., n+m for the water. Then we have Ax - 9/N and
(1-9)/M in the ice and water domains, respectively.
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Using the basis functions the temperatures of ice and water are given by

T (x, B I (x) TA + B I(x) T(i +BI( T., (15.1)

and

W 0 i M
T (x, 0 B WxWT F+ jBW~Cx) T n (C) +B W WT B(15.2)

where Bk(x) and Bk(x) are basis functions in the ice and water domains,
I W

respectively. Eq (4) is expressed by

(a) T, + n a ' ,&) TF k&{0,..., NJ (16.1)
N k k ak TAFa Tf~

1

and

(LA )2 z W.b b i T (9) + b T ke{o,..., M} (16.2)

i
in the ice and water domains respectively. In the latter, notation bk is

i
used instead of aK • The interfacial condition (14.6) becomes

d {TF- T() +  (a + 2a) TA +

+ n(' + 2')T (C) + -i(a' + 2aN)TF} +6 n a. 1 6 n

0cw 1 0 0
+ L 1- TF T n+1(C) + T (2b% + bl)TF +

6 0. 1'M  6 0 U/B1I W

which is found by substituting (3T /3x)F and (T /x) F in (14.6) with

TF'--F T n + N (zI + 2 zI)

and
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ixW T (-9)/M 6

respectively, and using the equations in (16).

VI. FINITE-ELEMENT EQUATIONS. We compute the integrals,

C aTI dC 32T' (d - 0 , j {f, . , n} , (18.1)
drTC T -p3x2) B I(x)dx -0 j l, n

and

3 T' dC 2W1 3Tx dT 3 T (x)dx - 0 j j{n+l, .. n+m} . (18.2)

f x dr 3x2  %(,

On the condition that the temperature distributions at the time substitute C
are known, we rewrite the result of the integrations to the difference

1equations at the time substitute 9 + 1A . Letting

Yk Tk( 
+ At) for k - 1,..., n+1m

we find that the difference equations are quadratic,

m+n m+n khm~n k

I I a +'k 1 0 +, (19)
k" I h I Yk Yh k= j kk-i h-i k-i j y "+ 7j = 0 ,(9

khwhere jC{i,..., n+m}. It is noted that aj is not symmetric with regard to
k and h. The process of obtaining these coefficients is shown in the next
section.

(V)To find the solution for yk, let y() be the vth approximation. Then,
applying Newton's method, the (v+1)th approximation is found by solving a set
of simultaneous linear equations,

k (v+1) -d (20)
h icJ Yk

where

k M+nhk (V) k

h-l J,

and (21)
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d . 1 mk+n h+hk (V) (V)
j 2' k 'hI CJj), k Zh -J

The time interval AT corresponding to the time-substitute interval A& can be
found by use of (17).

VII. COEFFICIENTS. Integrations of the equations in (18) become
simpler if the delta and epsilon notations introduced in the following by
(22) and (31), respectively, are employed.

By use of the delta notations, defined by

5(k; i-I, i) - I , if k - i-I , (22.1)

M- , if k- i , (22.2)

- 0 , if ko{i-I, i} , (22.3)

where k&0,...,N-1} , we give a unified expression to the derivatives of the
basis functions,

dB i (xC (xk 1 i x x, k ) (3
- S(k; i-I, i) +x •xG(xk, xk+I)J (23)

Because kefO,..., N-li , (22.1) and (22.2) are not applicable if i - 0 and
N, respectively.

The values at the mesh points xk+O and Xk+,-O are:

dB iW'- (xx(xo
I ,T 1r( k ik + ik O

1 8t(k; i-1, i) - ; (2ak + 2k+1 (24)

and

dBi

d- (xe(x' 'k+1))Ixk+l - 0

1 8{(k+1; i, i+i) + ( + 2a )} (25)

Ax 6, i-) k+1 (5
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Including the terminal temperatures, we rewrite (15.1) to

(x,) = B Cx) T (g) , (26)
i-0

where we do not attach subscript I to Bi(x) for simplicity.

Because

N [d x Bj(x) k+1 o , (27)

k-O Xk

where iE10,.., N} and jC{,.., N-1} , the partial integration of (18.1)
yields

N dT IN-i k+
dt -a I f B(x) Bj(x) dx +iO kd O xk

+I T N I f dx dB(x) dx - . (28)

To prove (27), use (11)., (A.2), (A.3), and (A.4),. the latter three of which
.are in the Appendix.

Use of (23) yields

f dB (x) dB (x) dx
xk dx dx

Ax8(k; i-1, i) S(k; J-i, J) +-

'k+1 i dp (9
~ (x~,c~,~ck~)) .dpx (x (xk,~ 4 )d

dx k'+'k1 dxk

where it is considered that IN

pj(xC(xk x k1i)) -0
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and

- o .

Ik k+l

Letting X - (X-xk)/Ax , the second summand in (29) is integrated to

1 X2)i 22a C13)a
36A f [(2-6A + 3.2)ak + Cl-312)ak+lj [(2-6X + k+1)a + 132a ]d)L

0k

1 l 4 ii 7 (i ij i i
,-& ~ 5  a k a k k+lak+Il )+T a k k+ 1+a k+j akJ

When (29) is substituted in (28), the first summand in (29), i.e. the
product of the delta notations, produces

N N-I

i 1-0 T k-0

where j-{1,..., N-1} . Considering that the second multiplicand delta
notation in the above is nonzero only for k - j -1 and - j , we get

F' N

iWo

which becomes

S I ( +2T (C) - T (W
.'- Ax 1 11J+1

Thus the second su-nd in (28) is evaluated,

N N-I Ck+1

N I -1 k+IdB i(x) dBj(x)Ax I T i(E) I f dx dx dx
i-0 k=0 xk

- + 2T T - - T1 N (30)
i~ J+I6 -

where

1%6
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- 4 J i 
A' 1 k +akla + Toa~ a +a Nk-0

in which

ie{o,..., NJ , jell...., N-11

I
In (30) the terminal temperatures T6(9) - TA and TN() - TF must be employed
when needed.

To simplify the integration in the first summand of (28), we introduce
the epsilon notation, defined by

(j) - 1 when j- 0
(31)

- 0 when j* 0

Then letting .A - (x-xk)/Ax, the entries in Bi(x) in (9) may be rewritten
to

((X - X )/X- (k-i+)
i- xxe(xil, xi)

((xi+l - x)/Ax) x- (1-) -- i) ,

p (x[h, xh+1D - -6 k-h) IX(2-3X + 2a + (X X3) }

where

hAS{01,..., N-1}

Carrying out the integration, we find

I N-I Xk+l i
AIX I B () Bj(x) dx ie{0,..., N, J E-{1,..., N-1}k-0

N-I
11. [z(k-i)e-j) + e(k-i+l)e(k-j )l] I [e(k-i)c(k-j+l) +

k-O

+ e(k-i+l)c (k-j)] - [(7aj + 16a + 7a + (7a i  + 16a + 7a1+1)] +
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+ 36 21 j + ij 3A1 '+36.21 [k 1 - ak+lak+Z) +2" To (kk + + a j)]}

1 (32)

Evaluated at ± -1, J, J+1, and i0{J-1, J, J+11 , Q-iyieldsII

J3,i' -J .

16a + 7a) + (7aJ- 6a +7a 1 +
W3 60 J(a-2 + - 1J-1 16 i J+1i 7 J a1 j+ )

N-i i I - I . .
3 I [ (aj ( aj + ,J ) +. ' ( +1(JJ + a (33.1)+k a+1 k+i 23-0 1 1

6 30 -L( a2 + 1 6a + 7a +T +
I 3 180 a 1

I N-i 31 j a (33.2)

36.21 k0k

1J,i-j+1

TI T6-0 7 6J+7 +( + +

'j+1a + a J + 7aj- 1 + 16a43 + 7ajj-+ 1)] +

+ 1 N- [ LJ+ j j+i j + i-I j J+ j 1

T - (.) + bo + js + 3 (a1 + 1 i (333)
36 .21

3.1k-0O kkak

p~Op

0 IF

lee j je IF of



Ax .I L {- . TI() + 2T () - T ()} +
dt10dC I +Ax J-1 j J+1

I-OI o A -o

where

Ax -U

Taking the difference and mean at 9 + A& , and using the temperature

notations defined in Sections IV and V, i.e., letting

dT' I Y __

and changing Ti (E) to

T((+-LAO - (Yi + Ti)

+1 2 2 j t

(18.1) becomes finally

( 2  n h -Th
N Ah-i I

yj-l + j l + y + T y + + T l +

y 2T

n y Aj + L AFi - oI h TA (34)36 h-I 2 1 36TA 1 36 I

Aj A a Oj nj
where J& . n} Al and Alare used instead of Al and Al respec-
tively, to avoid the possible confusion in the ice domain.

Following the similar procedure, (18.2) yields

2 Um h Th Jih -

ath-n41 At w

yJ - 4 Tj _ y + y J 1  4 +
2 j2
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+ I n~ Yh +ThAh +L'T AFJ + LT ABi - (5
36 h~1 2 w 36 F w 36 B v

where JC{n+1,..., +mI. F and Aj are used to avoid possible confusion in
the water domain.

Changing d9/dT to At/AT, and taking the difference and mean at

+ A , we rewrite (17) to

Afh- q + r , (36)

where

kN 1 k
q - (C /L) ZT2- (2 k + an) for k-{1..., n-i1

q n m (C 1L) + !- (2 n + an-)

q - (Oc/L) [- + (21 + b
q

k (1/L).- +bk-n
q -c 12 (2b + b, for kG {n+1,..., n+m}"

N T 1 0 0 (2 + NN
r L IT -cIL - R+T 2N+aN

1 2 Ft+.2a~ n)TA + 6 N~n)TF +

+ (2ai+ ai)T1 + Ow-L-I T-+ I(2bo + bO)T +
12 Nn1i1 L 1-9~ 2 6 0 i F

+ - (bM + bM)TB + -m (2'+bi)
6~ 0(2b12 0  1 b 1 1i-I

Substituting. (36) into (34) and (35), we find (19), whose coefficients
are shown below. Derived from -(34), the coefficients for j{i..., N} are
as follows,

kh 1 (5 2 k OJ,h

At N q I ,""i",...; n+m}, hC={1,..., n "
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Let k for ku{l ., n} be defined by

" 1 (C) 2- pk n h J + L a '
h 1 T h I + r n k1  71

then

k k x for kC-{1,..., j-21

- 1 for k J-1

- xi + 1 for k -

J I
- =x for k-j + 1

- x for kG{j+2,..., n}

1 L(.)2 pk Th g,h for Cfl....nl
N h-i kn

Let Pj be defined by

At h-I hw 2 - j 2 j+I

1 n

72 h-I h 1 36A1 36-T J+-LTA

then, we find

1
YI 1 - TA

YT - U1  for iE{2,..., n-1}

I

7n - n 2 TF
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Derived from (35), the coefficients for i&{na+l, .. , n+uf are as
f ollows:

kh 1 1 1- 2 k0j,h l U lIhCfl,. n lQj ' ic H v,

Let X k for kC-fn+l,..., nfm} be defined by

the we ~ M findI2

k 1. ,L (_L-,_) 2 k ~l Thajh for k{,.,

M ,k for kC-{n+1,..., J-2}

MxJ1 2 for k- J-I,

xAi. +1 for k-i,.

x ki 2 f or k - J+

xk for kC&{n+2,..., n+m}
- A

Let Mj be defined by

-i 1 1 (-L-) r X~ T&Q,h IT +r --

XC h-h+ 1 h 2 Ti-i1 2 Tj+I

+ :: + wh I36
72 h T~lh A1  w- 3Bw

then we find
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k 1 ( T , or k-{1,..., ii}

T MA hinn+1 hwv

- k for k(,n+1,..., J-2}

iS
- 1 i-1 1

2j- for k - J- ,

=X j+ for k - j
I

Xk -I for k - j+1 ,
j2

X k for kC{jJ+2,..., nm}
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APPENDIX A. Matrix a k in (4)

Case N - 3:

(A) 2 -5 4 -1I T(Ax) 2  z, 1 -2 1 0 yl

Lz3j -1 4 -5 2

Case N - 4:

z0  7 -24 22 -8 1 70

z 1 4 -8 4 0 0
(Ax)2 • 4 z - -1 +8 -14 8 -1 Y2

z3  0 0 4 -8 4 Y3

1z4  22 22 -14 9 ,y4

Case N 5:

z0  34 -92 88 -37 8 -1 YO

z 1 15 -30 15 0 0 0 yL

(Ax)2  15 Z -4 32 -58 37 -8 1 Y2

z 3 1 -8 37 -58 32 -4 Y3

z .4 0 0 0 15 -30 15 Y4

LZ5 -1 8 37 88 -92 34 y5

For N > 6, given r - [N/21, every entry aj can be found by dividing the
coefficient7of Yi on the right-hand side of an appropriate formula in the
following by the factor in front of the smmation symbol on the left-hand
side, where I and j are column and row numbers of the matrix, respectively.
The order below must be strictly followed in the computation. It is
demonstrated below that the least number of r is 3.
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Case N - 2r, where r > 3.

Raw r:

(2f - 0  "k f,
0

- (-)r f yo + (-1)r(2ft + f2)yL - (-1)r(f1 + 2f2 + f3)y2 -

r-1
6 1 (-1)' f k Yk - 2(fr- + f r)Yr -

r-I
-6 (_I),,k fk YN-k - (-.)r(f 1 + 2f 2 + f3)y N-2 +

3

+ (- 1 )r (2ft + f2)YN- 1 - (-1)rfL YN

r-1 r-I
where, if r - 3, sumations 6 (-1) k Yk and 6 1 (- 1 )-k k YN-k
omst be skipped. 3 .- 3

Row r-1, r-2,..., 2:

Letting i - r-1, r-2,..., 2 successively in the following, entries
ak in row i can be found:

N N
f alyI ia i+Iyk - 6(-I) 1f yo +

+ 6(-1)i (2f1 + f2 )y - 6(-I) (f1 + 2f2 + f3 )Y2 -

'i" -36 I (')i-JfJ yj -6(f,_ - + 2f,)y, +

+ 6f

where 6(-1) (f 1 + 2f 2 + f 3 )Y2 must be skipped for 1 = 2, and 36 , (-1) if
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for i - 2 and 3.

Row 1:

S

a 1 Yk YO - 2yI + Y2

Row 0:

I a. k I (24, - a2)7k
0 0

The rest of the elements can be found by using the centrosymnetric relation,

k N-kaj - ' (A.1)

where k, i " 0,..., N .

Case N - 2r+1, where r > 3.

Row r:

N

= (-1) f~ fL yo + (2f, + f2 )yj - ff1 + 2f2 + f3 )y2

r-I

-6 ~ ~ fk Yk] - ~ r 2 r r+1 ~ r-1. r+i1 r
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+ 6f 2 Yr, _ (.)rf[ 6  (-l)kf~k~
r fr ~r+2 -kY

1(fI +  2 + f3 )yI- 2 + (2fI + f 2 )y - f1 YN]

r-1 N-3
where, if r - 3, sinmations 6 1 (-1)Jfk Yk and 6 1 (+l)jf N-k Yk must be

skipped. 3 r+2

Row r-1, r-2,..., 2:

k
Letting i - r-1, r-2,..., 2 successively in the following, elements ai

in row i can be found.

f Nk
i1+1 I ai Yk -0

Nk
Nf ai+ Yk 6(-)Ifl YO + 6(-1)i (2fI + f2)Y -

- 6 (- 1 )i (f + 2f2 + f3)Y2 - 36 .- l)i- j f yj

- 6(fi-1 + 2fi)YI + 6fi Yi+-

where 6(-I)£(f + 2f2 + f3)y2 must be skipped for £ 1 2, and 36 1 (-1)±-fij Yj

for i - 2 and 3. J=3

Row 1:

N
N at Y, - yo 2y, + y 2I!I I
0
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Row 0:

N i N
I aoy, I (2l a)yi
0 0

The rest of the elements can be found by use of the centrosymmetric
relations (A.1). The validity of the centrosymmetric relation is obvious in
cases N - 3, 4 and 5. For the cases N > 6, it can be demonstrated by actual-
ly writing the expressions, which is avoided in this presentation.

k
Stipulated by the equations [I,[21,..., [NJ, elements aj satisfy the

relations shown below. Substituting (1) and (4) into the equations, equating
the coefficients of Yi, i - 0,..., N, and eliminating the duplicated
relations by use of the centrosymmetric relation (A.1), three groups are
found.

Group 1: Equations (01 and (NJ yield

ak - ak +ak 0(A2
a0 -2 1 +2in A2

where jO..,N

Group 2: For kC-li-I, i, i+11, equations [I,.. N-I1 yield three
relations,

"i_1 + 4a i +a 1  -6

i- i i+

" +4a + ai -- 12 (A.3)

and

"i+I 4 i+I + 1+
ai-I +4 a +i

where

ie~i...,N-11
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yld Group 3: For k {o,..., i-21J{+2,..., N} , equations [1],...,[N-.J

ak + 4ak + ak k . (A.4)
i-1 i i+1 S

Conventional set-theoretic notations (Ref. 2,3) are employed in the
above to describe the subset of concerned equation numbers.
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ON SOME FINITE ELDIENT ERROR ESTImATES FOR STRESS INTENSITY FACTORS IN

MODE I LINEAR ELASTIC FRACTURE PROBLEMS

I
J.R. Whiteman and G. Goodsell

Institute of Computational Mathematics
Department of Mathematics and Statistics

Brunel University, Uxbridge, England.

ABSTRACT

The use of the superconvergence phenomenon for the retrieved gradients

of piecewise linear approximations on triangular meshes to the solutions of

problems of planar linear elasticity is discussed. In particular results

for problems involving singularities are presented, with particular reference

to the apparent shortcomings for the case of linear elastic fracture.

I. INTRODUCTION

Finite element methods are now used routinely for problems of linear

elastic fracture, see e.g. Owen and Fawkes [5], and theoretical error estimates

for finite element approximations to stress intensity factors have been de-

rived, see e.g. Destuynder, Djaoua and Lescure [1]. However, there often

remains the hope with finite element methods that further research will pro-

duce better error estimates and improved rates of convergence. To this end

we consider here the phenomenon of superconvergence in finite element methods

and its possible use in the treatment of linear elastic fracture.

The phenomenon of superconvergence in finite element methods, whereby

the rate of convergence with decreasing mesh size of the finite element approx-

imation to the true solution of the problem is at certain points of the

problem domain superior to that found globally, is now well known and has

been extensively researched; see e.g. the review paper of Krizek and

Neittaanm~ki [4] which contains two hundred references. However, although

the superconvergence effect has been extensively exploited by engineers in

stress analysis, and even in linear elastic fracture by the use of contour

integrals using calculated stress values at Gauss points with quadrilateral

elements, it is true to say that the mathematical analysis of superconvergence

has lagged behind the practice; largely on account of the high levels of

regularity of the problem solutions required to produce meaningful super-

convergent error estimates. These have effectively precluded the analysis

of methods for realistic problems. This situation motivated the work of

Vheeler and Thiteman [8], who derived superconvergent estimates for recovered
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gradients on subdomains from piecewise linear finite element approximations

to the solutions of two-dimensional Poisson problems. This work was extended

to problems of planar linear elasticity by Whiteman and Goodsell [9]. The

result is that, for problems of the above types involving boundary singular-

ities, superconvergence estimates are available for the approximations to

the gradients of primary variables on subdomains.

However, for linear elastic fracture the main quantity of interest is

the stress intensity factor and its approximation. In this paper we consider

the finite element approximation of the stress intensity factor for a simple

Mode I problem, through the use of the J-integral of Eshelby [2] and Rice [6].

Theoretical error estimates for methods involving recovered gradients are

presented, which have lower rates of convergence than those of [1], although

the current approximations appear numerically to have the same rate of con-

vergence. However, we feel it worth-while to demonstrate these present

limitations, particularly as, for methods involving recovered gradients,

one might expect that both the theoretical and numerical rates of convergence

would be better than those obtained in the standard manner.

II. LINEAR ELASTICITY AND LINEAR ELASTIC FRACTURE

11.1 Linear Elastic Problem and Weak Formulation

The linear elastic problem is defined in the region Q c]R2 with polygonal
t

boundary s = 3c U T2 " The displacement u(x) : (u1 ,u2 ) at any point

X (x,x 2 )t E n satisfies the Lame equation

- jju - (X+P)grad divu = f in Q , (2.1)

and on B the boundary conditions

u = 0 on c , (2.2)

(u)nj = gi on a 1 i < 2 (2.3)

j=1

where-f are given body forces, g are boundary traction- and X and p,

, > 0, are the Lam6 constants of the material.

The admissible displacement vectors arb v (v ,v )t E (H'(C)) 2 and

2

we define
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V {v :E (HI(S)) 2  =0, i = 1,2} . (2.4)

The weak form of problem (2.1) - (2.3) is

find u E V 3 a(u,v) = F(v) V v E V , (2.5)

in which

a(u,v) = Xdiv udiv v + .j E W ( v) d (2.6)
2

-- -- i,j=1 1 -

F(v) B f t .vdx + I i givids . (2.7)

For linear elastic fracture we limit the consideration here to a Mode I

plane stress problem with symmetric loading as in Fig. 1. This problem is

of type (2.1) -(2.3) and we note that the faces of the crack are stress free.

4 n

Fig. I

The near-tip crack displacement field has the form, see [6],

= (Cose/ 2 (K - 1 + 2sin2e/2) '

K1  in9 /2 (K + 1 - 2 cos /2) ( . )4

where the constant KI is the (Mode I) stress intensity factor which has to

be determined, and for plane stress K = (3-v)/(1+v). The stress intensity

factor is important as it is a fracture criterion.
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One way of calculating KI for this problem is to use the J-integral,

see Eshelby (21 and Rice [6], defined, see Fig. 1, as
au.

Jr f Wdx -T. 1 dsl (2.9)

where r c P is any closed curve joining the lower and upper faces of the

crack, W =o. ij is the strain energy density and Ti = ajnj, n being

the outward normal unit vector to r. For the plane stress problem of Fig. 1,

J - K2/E (2.10)

where E is the Young's modulus of the linear elastic material of the

problem (2.1)- (2.3).

11.2 Finite Element Method and Recovered Gradients

We adopt the same notation and assumptions as were used by Whiteman

and Goodsell in [9]. The region R is assumed to have subdomains n0, ,n2

such that 10 cc 1 cc= 2 c= and is partitioned into triangular elements.

The regions n0 and 9 are assumed to be rectangular and such that each

is the union of a finite number of squares of side h. Each square is

subdivided into two triangles using the diagonal of positive slope, so

that 0 and S12 are each meshed completely with uniform isosceles right

angled triangles. The mesh in the remainder of - 22 is compatible with

that of T 2 and consists of triangles of general shape.

A finite dimensional subspace Sh c V consisting of continuous piece-

wise linear functions is defined over the partition of Q and the finite

element method is applied to (2.5) with trial functionu h and test functions

from Sh . For vh E Sh we define the recovered mid-point gradient

D( ifI I + 12YO] (2.11)

for k the mid-points of element sides in n and Tk and any pair of

adjacent elements in no. For element side mid-points M on 30 the recovered b
gradient is defined as

D (v ( M ) )  q qi[2y.] i (2.12)

=k i1 - Tk

where the qi are simple numerical coefficients and the summation is over

544

P' I,-, 0

Ir IW%



a small number of triangles involving and near to the point M, see [9].

For any element of £0 we take the linear interpolant to the recovered

gradients of - at the three side midpoints. Over the whole of 20 these

linear interpolants form the discontinuous piecewise linear interpolant

V* Yh to the recovered gradients of vh We define the seminorm

_ = - _.*4 (2.13)

It has been shown by Whiteman and Goodsell [9] that, if u E V n (H 3 (o 2 ))
2

h
is the solution of problem (2.5) and E S , then

.ChuiU + h 2 u } (2.14)

where !i E Sh is the piecewise linear interpolant to u at the element

vertices.

In order to obtain an estimate foru it is thus necessary

ncQato bound Iua I  - I, in (2.14). For the problem (2.5) with the configur-

ation as in Fig. I it has been shown in [91 that

-Io +IH u , i-2 'Q 2 Ia ,f

u C~h 2E 2,43-E S1 + h2 u 3 ,2 (2 .15)

where c > 0 is an arbitrary constant and u E (W2 C (S))2. Combining in-

equalities (2.14) and (2.15) we have that

1 - 1  9 + 'h - 2 C l , h 2 (2.16)

showing the O(h - 2
E) convergence on 0 of the recovered gradient function

to Vu.

III. PATH INTEGRAL ERROR ESTIMATES

For the case just considered where problem (2.5) is defined as in

Fig. 1 and thus contains a boundary singularity due to the crack and the

boundary conditions, the error estimate (2.16) holds only in an interior

subdomain 10, because it demands that the solution u E (H 3 (Q 2 ))
2 where

S2 c . The J-integral (2.9) is defined over the path F, which joins the
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lower to the upper face of the crack as in Fig. 1 and thus contains points

of aQ. This effectively precludes the use of estimates of the type (2.16)

for the estimation of errors in calculated approximations J* to J. However,

we believe that it is of interest to estimate errors in path integrals of

this type over interior contours, and this we shall now do for a represent-

ative case.

Fig. 2

We consider the fixed contour r c 'd0 which for simplicity we take as

a straight line parallel to the x.-axis through certain element side mid-

points of d0 as in Fig. 2. Along the contour r the recovered gradient
function --*-v v c Sh is continuous and piecewise linear.

It has been shown by Goodsell and Whiteman [3], that

r r

Ch2, / 3- C Q  2 h 3 (3.1)

this being an estimate for the Hl* error seminorm on the contour r.

The J-integral (2.9) contains terms of the type

ij (Vu) i (Vu)dx , (3.2)

r
which we approximate with terms of the type

- (u ) (u ) dxl (3.3)
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We are now able to bound. - J. , and the estimate and the proof are
iijJp

given in the following theorem.

Theorem If u E V n (H3(o 2 ))2 is the solution of problem (2.5) defined

in the region of Fig. I and and Y. are defined respectively as in

(3.2) and (3.3), then

I- - -o, 1 ' V r1 1 2 '/3_C,Q 3,.1

+ h 14E - hu •hI 2 (3.4)

Proof From (3.2) and (3.3) we have that

S * ) * - (Vu)((Vu)udx

-j ij J( - 4(V . - jY);x +- I -- if 1
IS If*u ) (V dxr f Vu)

J71- ih + j_ - (V u) d-i

__J -- -h f

< 2{ 1u (d[ -*V)h-VU + f idx Q +
- V u l dx

J71 -  - -=h ,--  I , - J- -I -=h -

2j uu, i + u-u "

J-f _I +..r-I -fV 7 l

'o2'' 1~ 12F

so that result (3.4) follows immediately using (3.1).

If we now define

K..

then, using (3.4), it follows that

ij = 1i1 [" j ij ! - Jij

_ j i 1

ij~ Jij i I -

j ' ij - ij = O(h 2-) (3.5)
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The result (3.5) is of course not an estimate for the error in the

approximation K to KI, which would be derived first by using gradients
recovered from the finite element approximation % at element side mid-

points in the computation of J* approximating the J of (2.9), and then

applying (2.10).

Further, even if a result of the type (3.5) were true for K* it does
I,

not have as good a rate of convergence as that derived in [1], where no

recovery of gradients is employed. However, numerical evidence, see [3],

indicates that in fact the convergence of K. to Z.. is 0(h), thus
iJiJ

suggesting that if the method were applied to obtain K the convergence

would be 0(h). The disappointing fact that the rate of convergence would

not even then be better than 0(h) is due to the lack of smoothness of the

solution of the fracture problem, see [9].
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SOME ISSUES OF NUMERICAL INTEGRATION AND PENALTY RELAXATION
IN ANISOPARAMETRIC SHELL ELEMENT FORMULATION

Alexander TESSLER and Luciano SPIRIDIGLIOZZI

Mechanics and Structures Division
U.S. Army Materials Technology Laboratory

Watertown, MA 02172-0001, U.S.A.

ABSTRACT. A simple two-node axisymmetric shell element with the
shallowly curved meridian, shear deformation, and rotary inertia is
developed. The major aspects include: (a) anisoparametric interpolat-
ions of the displacement variables to design out excessive stiffening
due to membrane and shear 'locking'; (b) consistent shear relaxation to
further upgrade the element strain energy; (c) low-order quadrature
evaluation. The resulting element possesses an improved condition of
the stiffness matrix, increased efficiency in explicit time integration,
and enhanced accuracy in coarse discretizations. Comprehensive vibrat-
ion examples are carried out to assess the element performance. The
numerical results demonstrate a wide applicability range with respect to
element slenderness and curvature properties.

I. INTRODUCTION. Shear-deformable curved beam and shell finite
elements formulated by the displacement approach present a number of
conceptual difficulties [1,2]. The major issue is that -of properly
approximating so-called penalty strains. These are membrane strains
that, due to initial geometry curvatures, couple membrane and bending
deformations; and transverse shear strains which couple the transverse
displacement and normal rotation kinematic variables. The computational
difficulties arise when the element geometry is very thin, in which case
the states of inextensional and shearless deformations are enforced by
the presence of large multipliers (or penalty parameters) of the penalty
strain energies. The enforcement of these deformation states at the
element level implies that each polynomial coefficient of the penalty
strain vanishes in the limit as the element becomes infinitely thin.
The resulting constraint equations (known as penalty modes) are either
properly coupled (involving contributions from all kinematic variables
of the penalty strain) or spuriously uncoupled (having degrees of free-
dom (d.o.f.) from a single kinematic variable). It is the latter type
of penalty modes that produces either nearly vanishing kinematic re-
sponse (the phenomenon known as 'locking') or yields excessively stiff
solutions. Thus, having properly coupled penalty strains (in all modes)
is paramount in achieving practical convergence in the thin regime.

Although requiring properly coupled penalty strains is necessary,
it is often not sufficient to ensure adequate thin-regime behavior. For
instance, reduced integration and an analogous (and often equivalent)
"field-consistent" approach [21,22], which produce properly coupled
penalty strains, have been shown [11] to yield inconsistent force vec-
tors (due to distributed loads) and mass matrices; thereby, producing
dramatically inferior results in problems involving higher vibrational
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modes or distributed loading. Moreover, simple (low-order) elements
often experience undesirable overconstraining at coarse discretization
levels, and lock severely in cases of overly restrained boundaries
[3,4].

To avoid locking an /or excessive constraining entirely, 'relaxa-
tion' of element penalty conntraints proved effective. The concept of
relaxing shear constraints, advocated by Fried [5] and MacNeal [6]
(though interpreted somewhat differently), introduces an element relaxa-
tion parameter (correction factor [7]) in the shear stress-resultant(s),
hence appearing as a multiplier to the penalty parameter. As the ele-
ment approaches its thin limit, the relaxation parameter diminishes,
reducing the penalty val;*. The remarkable aspect of this approach is
that at the global (whole discretization) level the penalty constraints
are enforced in a superior fashion [2]. Furthermore, the penalty relax-
ation provides practical benefits such as enhanced accuracy in coarsely
discretized models, a well-conditioned stiffness matrix over the whole
range of the element slenderness, and a reduced value of the highest
element frequency. The latter aspect allows larger time steps in the
expiicit time integration procedures.

In this paper we will develop a simple yet extremely effective
shallowly-curved, axisymmetric, displacement-type shell element in which
the effects of shear deformation and, in dynamics, rotary inertia are
acluded. The element is an extension of the conical shell proposed in
[8]. This effort will lay the groundwork for a three-dimensional shal-
low shell model..

The axisymmetric shell is an analog of a curved beam element dis-
cussed in [2]. From the interpolation standpoint the two elements are
identical. They employ so-called anisoparametric (i.e., distinct de-
gree) kinematic polynomials, which yield proper polynomial representa-
tions for the membrane and shear penalty strains. By enforcing the
higher-degree membrane and shear penalty modes explicitly (i.e., by
insisting upon constant variation of these strains along the element
meridian), a two-node configuration having three d.o.f at each node is
obtained. This, of course, implies that the lowest possible integration
order (single-point Guass quadrature) exactly evaluates the respective
strain energy contributions. However, normal Gauss quadrature rules are
used throughout so that the kinematic reliability of the element is
ensured (i.e., the only zero energy modes are those due to the
rigid-body motion) along with the variational consistency of the load
vector and the mass matrix.

Several penalty relaxation ideas are discussed. It is concluded
that a single penalty relaxation parameter on the shear stress resultant
(and, hence, the shear strain energy) can effectively be employed to en-
hance the strain energy approximation. The parameter is found analyti-
cally by a strain energy matching procedure.

The numerical experiments focus on the dynamic behavior of the ele-
ment; specifically, on its performance in free vibration problems. Re-
sults are presented for a wide range of shell geometries including very
thin, moderately thick, shallow, and deep axisymmetric shells.
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II. SHALLOW SHELL EQUATIONS. To present the finite element ap-
proach in a clear fashion, we shall focus exclusively upon the
axisymmetric linearly elastic shell equations in which the effects of
shear deformation and rotary inertia are included in the manner of
Naghdi [9] and, furthermore, the meridian curvature effect is accounted
for using the shallowness approximations of Marguerre [10]. The method-
ology, however, is general enough to be applicable to an asymmetric
shell-of-revolution response once the appropriate shell equations are
invoked.

Consider the shallow axisymmetric shell element depicted in Figure
1. The kinematic variables describing the axisymmetric response are the
middle-surface membrane displacement, u(s,t) (henceforth, t denotes
time), transverse displacement, w(s,t), and meridian cross-sectional ro-
tation, 8(s,t). Note that due to the shallowness assumption [10], which
in effect is a perturbation from a conical (straight meridian) shell,
these variables are attributed to the conical surface rather than the
actual curved one. As a consequence of this simplifying assumption, all
energy integrals are carried out over the conical surface.

The strain and curvature components may be written as:

Membrane strains

Es = Us + wI's W's) = (u sino + w coso)/r (2.1)

Bending curvatures

Is= -es , I= -e sino/r (2.2)

Shear strain

y = w s- 8 (2.3)

where s, 0, and r denote the shell coordinates, and wI describes a shal-
low meridian shape of the shell (wi, 2 <<). Note that when the meridi-
an is straight (i.e., wI=0, a conical shell), all strains (2.1)-(2.3)
are those according to Naghdi theory [9].

The corresponding stress resultants are related to the strains
through the constitutive relations:

N D e, M = Db , Q D y (2.4)
where NT = {NsNI, MT. { (M s'

NT {N s N T ( s '

i~ff ( <s , 41 Ic K

For a homogeneous isotropic shell of constant thickness h the constitu-
tive matrices are:

D 1 -2D I D= D I, D k2Gh (k 2 =7 2/12),-m - b -V s

551

-q' IV



D E12(h_3) (2.5)

where E, G, and v denote Young's modulus, shear modulus, and Poisson's
ratio, respectively; k2 is the shear correction factor; and h is the
shell thickness.

The equations of motion are readily derived from Hamilton's varia-
tional principle:

6jtLdt = ' J [ph( 62 + 2) + ph2 j2 1l2) 2nrds
to

- MTK + NTE + Qy] 2ffrdsIf•
+ f wq 2ffrds)dt = 0 (2.6)

where a superior dot denotes differentiation with respect to t, p is the
mass density, and q is the distributed transverse loading.

III. PENALTY STRAIN ISSUES AND INTERPOLATION CONSEQUENCES. The
pivotal issue in formulating an effective finite element based on this
theory is the resolution of a penalty effect engendered in the thin
shell-element regime. For the present case, we distinguish two types
of penalized strains that control thin-regime behavior - the membrane
meridian strain and the transverse shear strain. With Z being fixed and
h-0, the thin limits of membrane inextensibility and shearless (Poisson-
Kirchhoff) deformation are enforced at the element level. The pivotal
constraints take the form:

Meridian inextensibility: s= u, s w I's W's 0 (3.3)

Poisson-Kirchhoff: ys= W, - e - 0 (3.4)

It follows that this constraining action reduces the number of indepen-
dent d.o.f. by at least two. When standard isoparametric schemes are
used (i.e., uniform kinematic interpolation), spurious 'locking' con-
straints take precedence, making an element extremely stiff [3]. Clear-
ly, the lower-order elements are most susceptible to 'locking'.

The desired interpolation requirements are that:
(1) the polynomial degrees of u, w, and 8 should accommodate consistent
coupling within the vanishing strain coefficients (penalty modes); (2)
the number of penalty modes should be small to further reduce the possi-
bility of excessive kinematic constraining.
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Having a simple two-node element as our goal, the CO interpolation
strategy developed in [2] is invoked. Considering (3.4), it is clear
that if 6=O(s) (linear) then w should be O(s2 ). The interpolation for u
can then be derived from the requirement posed by the penalty con-
straints of (3.3). Assuming wI is cubic (refer to Fig. 1),

wI(x) = POE(n - 2n2 + n3) + pj(n3 - 92 ), (3.5)

wherei i= WV~s(ni), i-o,1 (n -s/ZC[o,1])

it follows that ufO(s'). By explicitly enforcing the shear and membrane
meridian strains to be constant within the element, in a manner coinci-
dent with the curved beam formulation [2], the desired two-node (six
d.o.f.) kinematic field is derived:

1 1
e - N,(n) ei, w = [Ni(n) w,+ K( n2) ei]

i=O i=O

1 (3.6)

U = [N(iW u + Li(n 3) w. + Mi(IN) 0. .

i=0

where expressions for the shape functions can be found in [2]. The
resulting constant c and y strains are:5

Es= 1(u1 - uo) + 0(61- go), (a)

(3.7)

Y = 1(w, - w0) - (e1 + eo)/2. (b)

where
8 = (01- 0)/12.

In the thin limit (c s0, y-0), these penalty modes ensure the desired
kinematic coupling.

IV. STRAIN ENERGY UPGRADING VIA PENALTY RELAXATION. The preceding
formulation, utilizing analytic shell equations directly into a finite
element variational scheme, may be regarded as conventional. This
common approach renders the membrane and shear penalty constraints (3.3)
and (3.4) enforceable at the element level, consequently requiring
consistent interpolations [2,12] or related strategies [13,14] to over-
come the thinness limitations. Although in one-dimensional interpola-
tion models such strategies are generally successful, they are, in fact,
insufficient in three-dimensional plate/shell models, where boundary
restraints often produce shear locking [3,4].

Another deficiency of the conventional approach is that in the thin
regime the stiffness matrix is ill-conditioned. In addition to requir-
ing high-precision computations, the ill-conditioning causes prohibi-
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tively small time steps in explicit transient integrations [151 and, as
we shall see further, unrealistically large errors in the higher natural
frequencies and corresponding mode shapes.

We therefore view the conventional approach as too prohibitive for
generating simple and effective elements. To produce well behaved
thin-regime elements, an element level relaxation of penalty constraints
is undertaken. The idea is to introduce a correction parameter in the
element constitutive relations that would account for the limited
kinematic freedoms of penalty strains by reducing the penalty parameter
in the thin limit. In this circumstance, the penalty constraints are
said to be relaxed at the element level. The problems of locking,
excessive stiffening, and ill-conditioning would then be eliminated.

Shear relaxation. For clarity, it suffices to consider the shallowly
curved beam [2], possessing the same basic penalty features as the
present shell. To illustrate the concept, consider a curved cantilever
beam, with an initial cubic shape, loaded at its free end by both mem-
brane, N1, and shear, Q1 , forces. The shear relaxation (correction [7])
is introduced via a positive parameter *2 , which appears as a multipli-
er in the transverse shear constitutive relations of the element:

= 02 Q = 2 k2GAy (4.1)

Equating the strain energy captured by a single anisoparametric curved
beam element of the lowest order, (p-i) [2], with the exact strain
energy for this problem, and solving for 2 s results in the same expres-
sion as in the straight beam case [7]:

2= ( + Ca) -1 (4.2)
s s s

in which

as 3k2  (£1h)2  (4.2-a)
s E

is the shear penalty parameter, and Cs = 1/3.

An important consequence of the above result is that the modified
element has a new penalty parameter

a ff= a o2= s (4.3)
s s s 1 + Csa ss s

with the following desirable properties:

- C 1 if h-*O (with fixed Z), i.e. thin regime b

a if Z-0 (with fixed h), i.e. thick regime

In the thin limit, the new penalty parameter approaches a finite value.
This implies that the Poisson-Kirchhoff constraint is relaxed at the
element level. (By contrast, the conventional penalty parameter ap-
proaches infinity in this case).
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It is apparent from this analysis that the new element is upgraded
in the energy sense to the level of a higher-order element, namely, the
second order element (p-2), which happens to model this cantilever beam
problem exactly.

Membrane relaxation. In [2], in addition to the shear relaxation
parameter 02s, we also employed the membrane relaxation parameter, o2

which served as a multiplier in the membrane constitutive relations m

No 2 N =.*2 AEc (4.4)
m m *1

having the form analogous to that of s 2:

2 = (I + C a (4.5)
m mm

in which am is the conventional membrane penalty parameter
km8

k
a= -- 12 (p£/h)2  (4.6)m kbee

The constant C = 1/4 was established on the basis of numerical tests to
yield an overal best element performance. (Although the results report-
ed in [2] were based on the correct a shown in (4.6), the P contribu-
tion in a was typographically omitted in the text). It was found that
o 2 produced only minor solution improvements; the major enhancement was
dAue to the shear relaxation, s.2.

This outcome can be predicted by assessing the relative strength of
the two conventional penalty parameters, which can be defined by the
ratio:

4ECL G (4.7)

s

For a typical isotropic shallow element R1 0.01, and thus a is at least
two orders of magnitude weaker than its shear counterpart. mThis implies
that much of the penalty related stiffening action is predominantly due
to a . Thus, the 02 relaxation of the inextensional membrane strain is
not essential. We sRall further highlight many of these issues by means
of numerical examples.

V. NUMERICAL RESULTS. We focus our numerical studies exclusively
on natural vibrations of spherical shells, ranging from shallow to deep
and from thin to moderately thick. Our motivation is to assess the
element on the basis of its dynamic performance by examining a wide
range of vibrational modes. The computed frequencies are compared with 4..

available analytic and finite element solutions.

In all numerical examples, unless stated otherwise, the values of
E/G=2.6 and k2=n 2/12 were assumed. The calculations were carried out on
an Apollo DN3000 in double precision.
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Anisoparamstric versus Isoparametric element. In this study we estab-
lish an appropriate Gaussian quadrature rule for the present element
without shear relaxation (labelled ANISOs2) and compare the element
performance to that of a two-node linear isoparametric element (labelled
ISOo2). The test problem is a deep/thin clamped hemispherical shell
(see Figure 2d) which, due to its thinness (R/h=100) and deep curvature,
is a challenging 'locking' test for this class of shear-deformable
curved elements.

Table 1 summarizes the ten lowest symmetric frequencies obtained
with a 16-element ISO*2 discretization using. 1-, 2-, and 3-point
Gaussian quadrature. The results are compared with the benchmark fre-
quencies from a 256-element ANISO*2 model, fully integrated with 3-point
Gaussian quadrature. The 2- and 3-point quadratur solutions agree very
closely. The first frequency is sufficiently accurate, however, the
higher modes experience severe stiffening (locking) as evidenced by
their overestimated frequencies. The results corresponding to the
1-point quadrature, which underintegrates all energy contributions (this
curved element is a direct analog of the 1-point quadrature conical
shell of Zienkiewicz et. al. [16]), produce frequencies converging from
either below or above, confirming its variational inconsistency. Again,
the highest frequencies are noticeably overestimated.

By contrast, all ten frequencies obtained with ANISO-2 (see Table
2) using 2- and 3-point quadratures are highly accurate. The results
based on the 1-point quadrature, which exactly integrates strain energy
contributions due to constant strains (e_,Y) and curvature (cs), are
slightly even more accurate, converging consistently from above (the
convergence study is not shown). However, further studies must be
carried out to verify the reliability of ANISOs2 with the 1-point inte-
gration. Henceforth, the 2-point quadrature will be used to integrate
the ANISO*2 element.

C constant. A suitable C value can be established by insisting upon
monotonic convergence of viration frequencies from above, a property
which is intrinsic to conforming displacement models. For this purpose,
taking into account that 02 is independent of p., it suffices to seek
frequencies of vibration of a circular plate (see 3igure 2a). In Figure
3, the error of the first symmetric frequency of a clamped circular
plate (R/h=100) is plotted versus the number of elements; where the four
curves correspond to C s 0, 1/20, 1/8, and 1/5. The best results are
obtained with C =1/8. Senceforth, this value is adopted for the ele-
ment, labelled ANISO-2o. Note that the beneficial effect of C is
especially pronounced in the coarse models. s

Further evidence of the effect of shear relaxation is illustrated i
in Figure 4, where the first, third, and fifth symmetric frequencies of
ANISO*2 (i.e., C =0) are normalized with the corr-sponding ANISO20
results. It is seen that the higher frequencies ben fit the most from
the shear relaxation.

Shallow shells. Tables 3 and 4 summarize the ANISOo2 and ANISO-20
results, respectively, for the first five symmetric frequencies of a
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thin (R/h=100) and moderately thick (R/h10) 10-degree clamped spherical
shell (see Figure 2b). The 256-element benchmark frequencies and those
obtained by a modified Holzer method [17] are cited for comparison
purposes. The frequencies obtained with the ANISO*20 elements are
consistently lower than those of ANISO*2; hence, they are more accurate,
since the convergence is from above. The results are also superior to
those reported in [17]. Note that the effect of shear relaxation is
particularly beneficial in coarsely discretized models and higher vibra-
tional modes. The diminishing influence of the shear relaxation parame-
ter is noticeable as the mesh is further refined.

Deep shells. Tables 5 and 6 contain the ANISO02 and ANISO.20 results,
respectively, for the first five symmetric frequencies of a thin
(R/h=100) and moderately thick (R/h=10) clamped hemispherical shell (see
Figure 2d). Again, the 256-element benchmark frequencies and those
obtained by a modified Holzer method [17] are cited for comparison
purposes. The ANISO*20 frequencies are consistently more accurate than
those of ANISO92 and those reported in [17].

To benchmark the element behavior further, we compared ANISOe2o
with two commonly used isoparametric axisymmetric shell elements from
the ABAQUS finite element program [23], SAX (2-node, linear) and SAX2
(3-node, quadratic). Both of the ABAQUS elements use reduced integra-
tion on the shear energy, and a shear relaxation parameter of the form
somewhat different than the present one. Figure 5 shows the percent
error for the first ten symmetric frequencies using a 48-d.o.f. model
for the thin, clamped hemispherical shell. Whereas ANISOe2o performs
consistently well, SAXI produces rather poor frequencies thoughout, and
SAX2 begins to deteriorate at higher frequencies. In addition, unlike
ANISOo2o, SAXI and SAX2 do not converge monotonically -- some frequen-
cies converge from above, while others converge from below.
Sixty-degree shell. Our motivation for analyzing the clamped 60-degree
shell (R/h=20) (see Figure 2c) was to compare the present element re-
sults with several others [18-20]. Table 7 contains frequencies for the
first eight symmetric modes of vibration. A 24-element model was used.
The present elements produce consistently lower frequencies, and because
they converge from above, they are of superior accuracy. Of particular
interest is the steady progression of improvement as the element is
upgraded from ANISOe2 to ANISOe2o.

Explicit integration. In this example we illustrate an often neglected
attribute of penalty relaxation. In the explicit conditionally stable
transient integration, the critical time step is bounded by the inverse
of the largest natural frequency of the individual elements Wemax;
e.g.,see [15]). Figure 6 depicts the normalized critical time step

t = 2c/9W e (c---/E/p - bar-wave velocity)

for a single, lumped mass element (P0-- 1ir/64) plotted versus i/h .

While the penalty-relaxed solution (ANISOe2o, C =0.125) is bounded by a
constant (At . -0.257) as L/h- ,, the standard formulation (ANISOo2,
C =0) exhibits ln exponential decline, falling several orders of magni-
tude below the results for the relaxed case. This example dramatically
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illustrates the enormous computational efficiency that can be achieved
by shear relaxation. Notably, other methods for enhancing thin-regime
behavior (e.g., [21,22]) do nothing to improve on the poor critical time
step performance of the standard (unrelaxed) element.

Extrem thinness regim. All shell problems presented herein were
solved using an extremely thin shell geometry (R/h-101). No locking of
any type was observed in this extreme-thinness regime.

VI. CONCLUDING SUMMARY. We have presented a shallowly-curved
axisymmetric shell element which includes the effects of shear deforma-
tion and rotary inertia. In our displacement formulation, we focus
particular attention upon the anisoparametric interpolations, shear
relaxation, and low-order numerical intergartion. The result is a
simple and efficient two-node shell devoid of shear and membrane
locking, having no thinness limitations. In addition, shear relaxation
(correction) of the shear penalty improved coarse-mesh behavior and
produced an element of superior efficiency in explicit time integration.

We regard this element as an excellent candidate for large-scale
computations, nonlinear applications, time integration procedures, and
microcomputer implementation. Finally, the present methodology appears
ideally suited for application to general shell models.
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Figure 1. Shallowly curved axisymetric shell element.

ab

I -90 ot -

Figure 2. (a) Clamped circular plate; (b) Shallow 10 deg. shell;
(c) Deep 60 deg. shell; (d) Deep hemispherical shell.
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TABLU 1. A study of Gaussian integration for 150.2;

mmetric nondimensional natural frequencies

W i~ [pR'(1-v2)/E]' for clamped, thin hemispherical

shell (Rib-100. v-0.3) discretized with 16 ISOe2 elements.

Mode BENCHM4ARK Gaussian Integration Order (n )no. 1 2 3 or hilir

1 0.7262 0.7253 0.7666 0.7666
2 0.894 0.8905 0.9817 0.9818
3 0.9382 0.9359 1.2389 1.2389
4 0.9730 0.9813 1.5315 1.5315
5 1.021 1.057 1.796 1.796
6 1.090 1.196 2.4.25 2.425
7 1.187 1.427 2.717 2.717
8 1.313 1.603 3.387 3.387
9 1.1.65 1.882 4.4.79 4.479
10 1.582 2.569 4.682 4.682

BENCHMARK

oANISOe2: n l 256, n do - 768 n int -3
(n*- number of elements; n df= number oi'n0F; n nt Integration order)

TABLE 2. A study of Gaussian integration for ANISOe2;

symmetric nondimensional natural frequencies

W i (pR(-OV2 E]i for clamped, thin hemispherical shell

(Rib-100, v'-0.3) discretized with 16 ANIS092 elements.

Mode BENCHM4ARK Gaussian Integration Order (n.no.
1 2 3 or hilir

1 0.7262 0.730fl 0.7303 0.7303
2 0.8948 0.8959 0.8975 0.8975
3 0.9382 0.9394 0.9423 0.9423
4 0.9730 0.9763 0.9808 0.9808
5 1.021 1.029 1.037 1.036
6 1.090 1.109 1.122 1.122
7 1.187 1.223 1.249 1.246
8 1.313 1.374 1.421 1.416
9 1.465 1.537 1.571 1.569
10 1.582 1.612 1.685 1.672
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TABLE 3. Nondimensional symmetric natural frequencies wj [pR2(1'v2)/E]i for

clamped shallow (10 dog), thin spherical shell (R/h=100, v-0.3)

No. Shear relaxation
of C2 Mode number
el. 1 2 3 4 5

4 0 1 1.6511 4.2265 10.3590 22.3270 35.3874
0.125 0.307 1.6431 4.0191 9.3704 21.2623 22.3745

0 1 1.6432 3.9044 8.4852 15.1210 22.05750.125 0.639 1.6412 3.8582 8.2779 14.5438 22.0446

16 0 1 1.6412 3.8342 8.1167 13.9544 21.1207
0.125 0.876 1.6407 3.8229 8.0675 13.8227 20.8509

64 0 1 1.6406 3.8129 8.0086 13.6263 20.3621

0.125 0.991 1.6406 3.8122 8.0055 13.6183 20.3458

BENCHMARK

256 0.125 1 1.6406 3.8116 8.0019 13.6063 20.3161
MODIFIED HOLZER METHOD [17] 1.6556 - - - -

TABLE 4. Nondimensional symmetric natural frequencies w i [pR(1"v')/E]i for

clamped shallow (10 deg), moderately thick spherical shell (R/h10, V-0.3)

No. Shear relaxation
of C a s  

Mode number

el. 1 2 3 4 5
. 0 1 6.0209 15.5464 22.3395 27.3698 31.1135

0.125 0.978 5.9858 15.4274 22.3390 27.1741 30.9162

0 1 5.9753 14.9272 22.0599 25.2442 30.10470.125 0.994 5.9666 14.8989 22.0597 25.1942 30.0633

16 0 1 5.9638 14.7707 21.9879 24.6198 29.8900
0.125 0.999 5.9617 14.7637 21.9878 24.6074 29.8799

64 0 1 5.9602 14.7214 21.9650 24.4178 29.82360.125 1.000 5.9601 14.7210 21.9650 24.4170 29.8229

BENCHMARK

256 0.125 1 5.9600 14.7183 21.9636 24.4051 29.8194
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TABLE 5. Nondimensional symmetric natural frequencies w 1 (PR'(1-v2)/E]I for

clamped hemispherical thin shell (R/ho100, v-0.3)

No. Shear relaxationMoenm r
of C* #2Moenmr

al. 1 2 3 4 5

40 1 0.7826 0.9448 1.4345 2.6343 3.8842
0.125 0.006 0.7454 0.9270 0.9937 1.0948 1.4494

8 0 1 0.7424 0.9058 0.9551 1.0064 1.0909
0.125 0.022 0.7352 0.9037 0.9523 0.9982 1.0693

16 0 1 0.7303 0.8975 0.9423 0.9808 1.0364
16 0.125 0.081 0.7289 0.8971 0.9418 0.9792 1.0321

64 0 1 0.7264 0.8949 0.9384 0.9734 1.0215
0.125 0.583 0.7263 0.8949 0.9384 0.9734 1.0213

BENCHMARK

256 0 1 0.7262 0.8948 0.9382 0.9730 1.02060 .125
MODIFIED HOLZER METHOD [17]- 0.7263 0.8948 - - -

TABLE 6. Nondimensional symmetric natural frequencies wi [pR'(1-v 2)fE]i for

clamped hemispherical moderately thick shell (Rfh-10, v-0.3)

No. Shear relaxation
of C*2 Mode number
el. 1 2 3 4 5

40 1 0.8514 1.3295 1.6280 2.6573 3.9533
0.125 0.356 0.8373 1.2772 1.5976 2.4814 2.9115

8 0 1 0.8187 1.2112 1.5464 1.9975 2.6501
80.125 0.687 0.8159 1.1994 1.5388 1.9480 2.6243

16 0 1 0.8112 1.1842 1.5251 1.8859 2.5394
0.125 0.898 0.8105 1.1815 1.5229 1.8753 2.5228

64 0 1 0.8089 1.1761 1.5178 1.8555 2.4829
0.125 0.993 0.8088 1.1760 1.5176 1.8549 2.4817

BENCHMIARK

05125 1 0.8087 1.1756 1.5173 1.8537 2.4792

Table 7. Nondimensional natural frequencies a - w R (P/0) for 60 deg.

clamped spherical shell (R/h-20, v-n0.3).

Mode Analytic Results FE Results with 24 Elements
No.

Kalnins [18] Ross (19] Navaratna (20] ANIS092 ANISOe2*

1 1.006 - 1.008 1.0006 1.0003
2 1.391 1.335 1.395 1.370 1.368
3 - - 1.702 1.675 1.673
4 2.375 2.368 2.387 2.268 2.260
5 3.486 3.478 3.506 3.230 3.213
6 3.991 - 3.996 3.967 ;~.965 C

7 4.974 4.970 5.001 4.475 4.442
8 6.690 6.687 6.729 5.829 5.773
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Abstract 

A Statically scheduled parallel block QR factorization procedure is 
described. It is based on "block" Givens rotations and is modeled after the 
Gentleman-Kung systolic QR procedure. Independent tasks are associated 
with each block cotuma 'Tal'est possible' subproblcms are always 
solved The method has been implemented on the IBn Kir^ston LCAP-I 
system which consists of ten FPS-I64/MAX array processors that can 
communicate through a large shared bulk memory. The implementation 
revealed much about the tradeoff between block size and load balancing. 
Large blocks make load balancing more difficult but give better 164/MAX 
performance and less shared memory traffic. The results obtained 
indicate that our approach to ^arsilelizing the QR factorization is 
competitive for very large proDiens, e.g., of the order 5000-by-lOOO. 

This work has been supported by ONR contract .N"00014-83-K-0640, NSF contract CCR36- 
02310, the Mathematical Sciences Institute at Cornell which is sponsored by the Army 
Research Office, and by the IB.M Corporation. Computations were performed at [BM 
Kingston and on the Production Supercomputer Facility at Cornell which is supported in part 
by the National Science Foundation ana IBM. 
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1. 

Computing me QR factorization of a matrix A s R*™" involves finding 
an orthogonal matrix Q e R"^ and an upper triangular matrix R e R"^ 
sucn that A = QR. This factorization has a prominent role to play in 
numerical linear algebra espgcially because of its bearing on the least 
square problem. A detailed description of the QR factorization and the 
various ways that it can be computed may be found in Golub and Van Loan 
(1983). 

Parallel methods for computing the QR factorization have received 
considerable attention recently. For systolic arrays attention has 
focussed on methods that rely on Givens rotations. See Gentleman and 
Kung (1981) or Heller and Ipsen (1983). Dongarra, Sameh, and Sorenson 
(1986) have implemented both parallel Givens and parallel Householder 
procedures on the Denelcor Hep. 

in this paper we discuss a block version of the Gentleman-Kung method 
that we have implemented on the IBH Kingston LCAP-i. This system 
consists of ten FPS-164 array processors (APs) that can communicate 
through several shared bulk memories. An overview of LCAP-l is offered 
in dementi and Logan (1985). The features of LCAP-I that figure in the 
current work are depicted in the following diagram: 

164 164 164 T64]   [T64]   |T64]   fT64l   |T64l   |T&4 

SCA BULK MEMORY 

There are actually two levels of parallelism here because the APs are 
each capaDle of performing twenty parallel dot products. Indeed, the 
FPS-ie4,nAX's at Kingston each come equipped with two 'MAX boards". 
The MAX Doard enhancement enables each AP to perform matrix-matrix 
multip-ca:;on at a peak rate of 55 nriops il the matrices involved are 
suffic;;r.Tiy large. Full exploitation of the FPS-!64/riAX requires having 
an algorithm that is rich in matrix multiplicatioa   This is why we have 
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chosen to develop a parallel bloc)( procedure. The blocking of the matrix 
A is largely a function of the i64/nAX arcnitecture. For example, it turns 
out to De efficient to have DIocJc columns that are a multiple of twenty 
simply because the LCAP-I APs can g^ perform twenty parallel dot 
products. Further details concerning the FPS-l64/riAX architecture may 
be found in Charlesworth and Gustafson (1986). 

The matrix A is stored in a 64 Mword bulk memory unit mamfactured 
by Scientific Computing Associates (SCA). Thus, a dense problem of size 
16K-by-4K could potentially be solved The APs have approximately 600 
Kwords of usable memory. This is enougn to house, for example, a 
iooo-by-500 submatrix. 

Data between the APs and the bulk memory flows at a rate of 44 
Mbytes/sec, However, high latency associated with each transferred 
message demands that data be moved in fairly good-sized churls in order 
to be efficient, e.g., 1000 words. 

Additional nuances of the LCAP-I system as they apply to our QR 
implementation are detailed later. 

This paper is the first of several reports In which we explore the 
issues associated with parallel matrix computations on me LCAP-I. The 
parallel block QR factorization scheme that we encoded is derived in S2 
and §3. Implementation details are covered in §4 and results in §5. Our 
current QR code can be improved in several ways as we often opted for 
the "easy way out" when confronted with an algorithmic dilemma. 
Despite this we feel that our LCAP-I experience offers general 
perspectives enlarge scale distributed matrix computations. 
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2, Parallgl Giv^ns QB 

We say that G f R'^^*" is an adjacent Givers rotation in planes 
if G is the identity with the foilowing'2-bL|-2 exception: 

and 

9i-i.i-i    9i-i,j cos(e)  sin(e) 

■sin(9)    cos(9) 
2< i <m 

Notice that G is orthogonal and that premultiplication by G affects just 
rows i-l and I . If x f R"^ then it is not hard to determine (cos(e).sin(6)) 
so that L|j = 0   if y = Gx . These and other Givers rotations issues are 

discussed in Goiub and Van Loan (1983, pp.43-47). 
Adjacent rotations are important because they only comlDine adjacent 

rows or columns when applied to a matrix. Moreover, they can be used to 
compute the QR factorization of a matrix. Assuming A e R"^ (m > n) 
we have: 

Algorithm 2J 

For j = |:n 
For i = m : -1 : j+1 

Determine an adjacent Givens rotation G-.-. such 

that 

A:=Gjj^A 

if y = G,j^A(;, j:j) then yj = 0, i.e., ZEroa,j 

end 
end j 

Upon completion A is overwritten by R arid 

Notice that the algorithm computes R cclumn-by-column and that the 
zeroing within a column proceeds from the bottom up to the subdiagonal. 
Here is a depiction of the 4-by-3 case: 
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Xxx Xxx X x x X xxx X Xxx XXx

XxX xXx.. X X X ,o X . OXX . oxX oxX

x X XX o0x 0XX. oxx ooX ooX

XXX OX X 0X OXX OOX OOX 000

To indicate the inherent parallelism in this procedure we resort to a
slightly larger example and number the a,, in the order that they are

zeroed:.

X X X X

8 x x x
7 15 x x
6 14 21 x
5 13 20 26 m=9,n=4
4 12 19 25
3 11 18 24
2 10 17 23
1 9 16 22

Recognize that the computation and application of G1j can begin as soon

as Gi-,j.1 is applied to A. To illustrate this we tabulate the earliest

-time step- that aj (i>j) can be zeroed:

X x X x
8 x X x
7 9 x x
6 8 10 x
5 7 9 11 m:9,n=4
4 6 8 10
3 5 7 9
2 4 6 8
1 3 5 7

With this notation we see in the example that four Givens updates can De
performed during the seventh time step: G31 , G52, G73, and G94. If we had
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4 processors then they could each be assigned one of these tasks.
The parallelism that we have exposed in the above example can be

formalized by rearranging the loop indexing in Algorithm 2.1 and noting
that m+n-2 timesteps are required.

Algorithm 2.2

For k = 1: m*n-2
For All j = I:n

i =m-k+1 2(j-t)

it (i <m & i a j i)
Determine Gil to zero aq

endA:= G.jT A
end

end j
end k

The "For All" statement reminds us that all of the updates A : GijTA

associated with a given time step k are independent and can be performed
in parallel.

We point out that Gij can actually be computed "earlier" than we have

indicated. For example, in the (m,n) = (9,4) case above, we have assumed
that G92 is computed as soonas G91 has been applied all the way across
the matrix. In fact, G92 can be computed as soonas G91 has been applied to
just the second column. For reasons that we give in S4, we have not
implemented the "soon as possible" generation or Gij.

Algorithm 2.2 and its natural variants can be mapped nicely crto

systolic networks. See Heller and Ipsen (1983).
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3. A Parallel Block QR Factorization Method

Some notation is required before a block version of Algorithm 2.2 can
be specified. Partition A i Rm  as follows:

A : (3.1)

Here, Aij is mI-by-n and we assume that m, Z n, for alI i and j. If Q is

an orthogonal matrix of dimension mi-, + m, then we refer to

Gi(Q) = atag( 1mt _. i.2.' QI I&I .-- I%

as an adjacent "block Givens" rotation in block planes i-I and i

Algorithm 3.1 (Block Givens QR Factorization)

Fork:= : p~q-2
For Ail j = l:q

i p-k+1+2(j-I)
if i:SP & i aj+1

Determine orthogonal Q,, such that

QtjT [Ai. j  = [ (R upper triangular)

Set Gi z Gt(0 11 ) and update A:: G.JTA

end
endj

end k
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This procedure is identical to Algorithm 2.2 except that blocks are zeroed
Instead or scalars. Upon completion A is overwritten with a block upper
triangular matrix R. Unless all the Al are square, then R will not be upper

triangular as a scalar matrix. For example, if the partitioning in (3.1) is
defined by (m1,m2) = (3.3) and (nl n2) = (2,2) then Algorithm 3.1
overwrites A with

x X X X

R: OOxx
OOxx x

O00 x0000 I

Of course, it is possible to upper triangularize this matrix with further
Givens operations, but that is an annoging but necessary follow-up
computation.

However, there is a more serious problem associated with rectangular
blocks. Consider the example (m2,,m 3,m4) = (2,3,3,8) , (nn 2 ) = (2,2). At
the begining of the second time step A looks like

x x x x

x x x x
x 9 x xX X X XX X X X

o oi x
0 x~ x X

0 01 X X

0O0'x X

0 0 X X

0 XX

OO x x
OOx x
OOxx

OOxx 574
00X X



At this stage, Algorithm 3.1 specifies that we only upper triangularize
the submatrix A(3:8,1:2), i.e., the subproblem defined by blocks A21 and
A31. However. we see from tfle figure that a significant amount or zeroing
in the second block column can take Place concurrently. In particular, we
could upper triangularize both A(3:8,1:2) Xg A(9:16,3:4).

In ge neral, -because the wbottom* submatrix A in each subproblem is
upper trIangular, "taller suomatrices can be upper triangularized
throughout Algorithm 3.1. In order to rearrange this algorithm so that
*maximally tall" subproblems are solved at each stage, we need to drop
the f ixed row blocking in (3.1). We continue to assume that A has q block
columns with widths fI flq However, instead of imposing a fixed
blocking of A's rows we have chosen to determine the *heightm of the
subproblems through an integer parameter N0 that satisfies mo a 1 In
our scheme, the subproblems in the f irst block column involve at most m0
rows. Maximally tall subproblems are then solved in subsequent block
coluns at each step. To ilIlustrate, consider the case m: 100, in:20,
and (n,n,n4j) :(Z,3,55):

Time Step Column Ranges

1:2 3:5 6:10 11:15

1 81:100 -

2 63;82 83-100
3 45:64 6 5:85 86:100
4 27:46 47:67 68:90 91:100
5 9:28 29:419 50:72 730:95
6 1:10 11:31 32:54 55O:77
7 - 3:13 14:36 3 7:5SO9
8 -- 6:18 19:'11
9 --- 11::3

In general four integers rowsrt(t,j), rowend(t,j), colsrt(j). and :c'id(j)
are necessary to describe subproblem (t,j), e.g., 29, 419, .3, and 5 f or

subproblem (5,2). rhese index arrays and the total number of ,r steps

575



tr' required can be computed'as follows:

Algorithm 3.2

Let m. n, ino. q and the column Partitioning (n1,..,n q) be given with m~n
and m0>N1. This algorithm determines tr and the index arrays colsrt(l:q),
colend(1:q), rowsrt(I:t r I:q), and rowend(M: r ,1:q).

tf = ceiling( max(O,m-mo) / (m0-n1) ).q

Fort=: :tf
if~ t =1

For j z 1:q
if j=11

colsrt1) I
colend(1) r
rowsrt(tj) =max( 1 , m-m0.1)

else
coisrt(j) 2colend~j-l) + I
colend(j) =colend(j-l) + flj
rowsrt(tji) = m

end
rowend~t,j) inm

endj
else

For j = :q
if j 1

rowend~t,1) :rowsrt(t-l,I) + N1 - I
rowsrt(t,l) -max(l, rowend(t,l)-m0.l)

else
rowend(t~j) inir< rowsrt(t-1,j) + * - I m n

rowsrt(t,j) :max( colsrt(j), min( rowend(tj-1) +1, in))
end

end j
end

endt
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A couple of comments are in order. In block column I. the subproblems
"cllmt" at the orate' m o - n, and so I + ceiling( max(om-mo)/(mo-n) )
steps are required to complete tne processing of block column I.
Thereafter one block column per time step is completed. This explains the
formula for t r and why we must have m0 > n, .

In block column j , *serious" computation does not begin so long as
rowsrt(tj) = rowend(t,j) = m. After block column j is fuJlJ triangular ized,
rowsrt(t,j) = colsrt(j) and rowend(t,j) = colend(j), conditions that
normallg signal that there is 'nothing to do' in block column j (An
exception occurs when rowsrt(t,j) = colsrt(j) and rowerdt,j) = colend(j)

rn.)
With subproblems specified by Algorithm 3.2 we can now describe the

overall factorization procedure.

Algorithm 3.3 (flauimally Tall Block Givens QR Factorization)

Given m, n, m0, q, the column partitioning (nr,...,n q) with m ? n and m0

> n,, the following algorithm overwrites Ae Rm with upper triangular R
OTA where 0 is orthogonal..

Compute tf , rowsrt(l:t f ,l:q) , rowend(I:t ,l:q),,

colsrt(l:q), and colend(1:q) using Algorithm 3.2
For t I : tr

For j = I:q
i, rowsrt(tj)
iz rowend(tj)
j, = colsrt(D
12 =colend(j)
if(i1=i2=m or (il = &i2=j2& j2  m))

-Nothing to do.-
else

Compute: A(i:i2,jl:j2) = OR.
Apply- A(il:i2.jl:n) = Ql"A0ii:i2,jt:n)

end
endj

end t
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4. Implementation

In this section we discuss three issues associated with the
implementation or Algorithm 3.3 on the LCAP-l system: now A Is
arranged in shared memory, how the subproblems are solved, and how
block column tasks are mapped onto processors.

The Storage or A

At time step t. the relevant row and column delimiters for the j-th
subproblem are il = rowsrt(t,j), i2 = rowend(t,j), J, = colsrt(j), and j2=
colend(j). Here is what the array processor in charge or this subproblem
must accomplish:.

1. Read A(il:i2 .j:j2) from shared mernory.
2. Compute an orthogonal Q such that QTA(i:i2,jfj2) = R is

upper triangular.
3. Write the updated A(il:i2 ,j,j2) back into shared memory.
4. Read A(i 1:i2,jl+l:n) from shared memory.
5. Apply GT to A(it:i2,j1kl:n)
6. Write the updated A(il:i2,j2.1:n) back into shared memory.

We assume that A(i1:i2,j,:j2) can fit into local memory but that because or
its size, the processing of A(i1:i2,j2+l:n) may have to proceed in "chunksm.
That is, steps 4-5-6 may have to be repeated with a manageable segment
of columns from A(il:i2,j2 'l:n) each time. Note that 0 stays in the AP
during this process. Because one AP is responsible for applying a given 0.
there is no need to pass 0 on to another AP.

There is an overhead associated with traffic to and from shared
memory. Reads and writes to snared memory are accomplished with a
"move" command and can oniy involve contiguous portions of memory.
Using move to transfer n floating point words takes

T(n) = (100 # Sn/44 ) jsec

Note that the 100 jisec startup degrades the 44mD/sec peak transfer rate.
Thus, a vector of length 1000 tak2s 281 jUSeC to move for an effective
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data transfer rate of 28 mb/sec.
From the standpoint of processing the subproblem at hand, it would be

ideal if A(i1:i2,j1:n) was contiguous in shared memory for then a minimum
number of moves would be required to carry out steps 1,3,4, and 6 aoove.
For example, to read a contiguous 1000-by-500 submatrix from shared
memory would require T(500,000)= .09 sec (s 44mb/sec). Unfortunately,
storing by blocks in Algorithm 3.3 would impose significant buffer
requirements and some tedious data manipulation within each AP. The
buffer issue is fairly important because the AP's we used have limited
local memory (- 600 Kwords).

Because we didn't want additional buffer requirements to limit further
the size of *working" memory we chose to store A in column major order.
This implies that r moves are required to move a submatrix with r
columns. Thus, to read a 1000-by-500 submatrix requires 500.T(1000) Z
.14 sec (n28 mb/sec). This is actually a typical size for a submatrix move
in our algorithm. When the overall implementation is considered, we can
easily live with a 28 mb/sec data transfer rate.

Subproblem Solution

The basic computation in Algorithm 3.3 consists of computing a QR
factorization and then applying the resulting orthogonal matrix to the
"rest of A*. The normal "Linpack' way to compute a OR factorization of
a matrix C e RmOxn0 is to use Householder matrices. A Householder
matrix is an orthogonal transformation of the form

P=l-2vvT vERmO,1v1 2 :I.

In the Linpack OR procedure Householders PI, ... , P N are generated so that

Pn -" PIC = R is upper triangular. Note that Q = P,... P n'
We now consider the computation QrB where B is some matrix. If 0

is represented as a product of Householders, then the resulting algorithm
is "rich" in matrix-vector multiplications. This is fine for many
architectures. However, to exploit fully (he FPS-164/MAX architecture.
we need an update algorithm that is rich in matrix-matrix multil~icatio.
We could accomplish this by explicitly forming the product Q P,... Pn,
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before applying it to B. But this would be very costly since m0 >>
usually. An unacceptably large mo-by-m o buffer would also be required by
this approach.

Instead. we nave chosen to use the *WY" representation ror products
of Householder matrices that is developed in Bischot and Van Loan (1985).
In this scheme m0-by-n 0 matrices W and Y are generated such that

Q = P"'" PNo=I + WYT

The ensuing update B := QTB = (I * WyT)TB = B + Y(WTB) is then obtained
by a pair of matrix-matrix multiplications:

(i) z WrB
(ii) B=B+YZ

For (i) we used the "MAX" routine pdot that can compute twenty
parallel dot products. To initiate the parallel dot product the relevant
twenty vectors must be placed in the MAX registers using another MAX
routine called ploadd. We examine this in some detail so that an
appreciation of MAX board computing can be obtained. Assume that W and
Y are m0-by-n 0 and that n (for simplicity) is a multiple or twenty. If B is
mro-by- k then here is how the matrix Z : WTB is formed.

For j = 1:20:n0

Load W(l:mo , j:jg19) in to the max registers using
pload.

For i = :k
Compute Z(j:j*19,i:i) W(l:mo . j:j.19) TB(l:moi:i)
using pdot.

end i
end j

rhe times required for each pload and pdot are approximately

ploadd: L(mo) = 23 + 58.2 m  (pusec)

pdot: D(mo) =29.7 * .7381*mo (11sec)
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Thus, Z = WTB is obtained in (no/20)(L(m) + k*)(m o) ) jisec. Since Z
requires 2monek flops, a calculation shows that the effective
performance in megaftops is approximately given by

Mflop(WrB) = 55 ,

1 + 40/m0  79/k * 31/mok

This expression reveals the penalty for short vectors (small In 0) and for
low re-use (small k). Here is a table of some representative Mflop(WTB)
values:

klO0 k=500 k=1000 k=5000

me = 100 25 35 37 39

m = 500 29 44 47 50

me = 000 30 46 49 52

m0 = 2000 30 47 50 53

Table 4.1

We mention that because the MAX registers can handle vectors up to
length 2047, the subproblem height parameter m0 should be chosen so
that rowend(tj) - rowsrt(t,j) < 2047 for all t and j

we now turn our attention to the rank-ne update B +- B + YZ that makes
up the second half or the B *- ( + WYT)TB computation. For this
calculation the FPS-164/MAX has a parallel saxpy capability that appears
well suited. With two MAX boards it is possible to perform nine saxpys
of the form ci *- ci + sly in parallel. Note that this is a rar-one update:
C *- C + ys. Here is how the update of B would proceed using the parallel
saxpy routine pvsma and the attending load/unload routines ploadv and
punldv. For simplicity, assume that k is a multiple of 9:

581

Nov



For 1:9:k
USe ploadv to load B(1:m.j:j 8) into the max registers.
For i = l: 0

Use pvsma to perform the update
B(l:m0,j:j 8) -. 8(1:m0,j:j 8) + Y(l:m0,i:i)Z(i:i,j:j*8) ,

end i

Use punldv to write the updated B(1:moj:j.8) back to memory.end j i

Reasoning as we did to determine Mflop(WTB), it can be shown that

Mflop(B + YZ) = 24

I + 34/m o + 70/n + 62/mOn

Note that the re-use factor is now n rather than k . This is unfortunate
since in our application we typically have k > m0 >> no . If we look at
some typical values of Mflop(B + YZ), then this is what we find:

n 20 no :40 %o= 60 no=80

mO  100 4.9 7.7 9.5 10.8

MO= 500 5.2 8.5 10.7 12.3

min0 1000 5.3 8.6 10.9 12.6

"11 : 2000 5.3 8.6 11.0 12.7

Table 4.2

ThLS, pvsma is ill-suited for the B - B + YZ update when compared to
the 23-53 Mf lop rates sustained by the pdot computation of Z : WTB. For
this reason we chose to use a new FPS parallel matrix multiply routine
called pmmul that can perform the update B 4- B " YZ at rates more
cons;stent *,rr 'tie values in Table 4.1.
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Two final comments about subproblem solution. The first concerns the
recording of the orthogonal matrix 0. This matrix is the product of
Householder matrices. Or course, these Householders are clustered and
applied in WY form during Algorithm 3.3. But we can save all the
Householder vectors by overwriting each zeroed subcolumn or A by the
corresponding Householder vector. In particular, whenever a subcolumn v
e Rd of A is zeroed by a Householder matrix (I + 2uuT/uTu) , we store
u(2:d) in v(2:d) with the convention u() = I . It is then possible to
retrieve Q from the final array A so long as the index arrays rowsrt,
rowend, colsrt. and colend are available.

Lastly, we mention that the subproblem OR factorizations in
Algorithm 3.3 are typically of matrices that have a band structureJndeed,
it is usually the case that A(rowsrt(t,j):rowend(t,j),colsrt(j):.coled(j))
has lower bandwidth rowsrt(t-l,j)-rowsrt(t,j). This fact is exploited
when the OR factorization is computed and the resulting WY factors
found.

Load Balancing and Scheduling

Suppose Algorithm 3.3 is to be implemented on array processors
AP,_,AP p . At time step t in Algorithm 3.3 there are q independent tasks

to perform. Task (tj) involves

Factoring: A(rowsrt(t,j):rowend(t,j),colsrt(j):colend(j) ) OR

Computing: QTA(rowsrt(t,j):rowend(t,j),coisrt(j):n))

Here, t andj satisfy 1 <t <tf andi <Sj <q. If p=qthenanimmediate

load balancing problem arises if each block column has the same width
because task (t,j) generally has more matrx to update than task (t~j*.).
One way around this difficulty is to make each1 block column wider than
its predecessor. We illustrate this for the case q = 2 with block column
widths N and n2 . Assuming a subproblem ne!ght of m0 then approximately
2m0n12 + 2nlm0nz flops are required f-r task (t,). On the other hand,
2m0n2Z2 flops are required for task (t,2) if we again assume a subproblem
height of mo. These two flop counts are aoproximately equal if (n/nz)
.62.
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FOr general q it is possible to work out quotients nj/nj. for j

i:q-I so that approximate load balancing results for the column
partitioning nl,...,n q. Of course, in practice it would make more sense to

base column partitioning guidelines upon benchmarks rather than upon
flop counts. We have not pursued this.

Instead we make the block column widths narrow enough so that the
number or independent tasks q is significantly larger than the number p of
assigned APs. Approximate load balancing is te achieved by assigning
APk to block columns j = kp:q. For example, it p = 3 and q = 12, then AP,

works on block columns 1 .4, 7, and 10, AP2 is assigned to block columns
2. 5, 8, and It, while AP3 is applied to block columns 3, 6, 9, and 12. In a
typical time step, each AP will work on 4 subproblems with a greater
balance of work than if q - 3 . This style of distributing tasks has been
widely used in parallel matrix factorization work, see George, Heath, and
Liu (1985). A fringe benefit of this approach is that we can choose block
column widths to be a multiple of twenty. This allows for efficient
exploitation of the 164/MAX architecture that permits twenty parallel
dot products. In our examples we used uniform block column widths of
twenty and thus q n n/20.

To actually execute Algorithm 3.3 in parallel on LCAP-! we
implemented a lock-step synchronization scheme using "barriers*. The
blocking arrays rowend, rowend, colsrt, and colend are determined by the
host and then downloaded into the p array processors assigned to the
computation. The matrix A is also downloaded into the shared memory
through the APs. APk then executes the following program:

Algorithm 4.1 (Processor k's Share of Algorithm 3.3)

For t = l:t r

For j k-p:q
Compute A(rowsrt(t,j):rowend(tj),colsrt(j):colend(j)) =R
Update A(rowsrt( t,j):rowend(t,j).colsrt(j)-n)

endj
Barrier

end t
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When the barrier is encountered, execution is suspended until all the other
AP programs reach their barrier. After this is accomplished the
processing of the next time step begins.

Further details about the LCAP-l system software required by our
implementation may be found in Chin and Lorenzo(1986).

5. Some Results and Conclusions

In testing our implementation we ran our codes on random matrices A
e Rmto n with the property that A(:m,:n-I)e A(:m,nn) where e is the
vector of all ones. The correctness of R was then confirmed by checking
the equations R(:n-I,l:n-1)e = R(l:n-lrnn) and R(nn) = 0.

We report on two of the several examples that we solved using the
parallel QR code. We do not pretend that our results are conclusive. They
merely confirm some natural suspicions and point the way to future
research.

The first example indicates that we can get away with our lock step,
coarse grained approach if A is large enough and suitably blocked. Here
is what we found by using one, two, and three APs to solve an (mn) =
(5000,1000) problem with N0 = 1000, q = 50, and n =--=N 0 = 20.

Number of Time Speed-Up Effective
Processors (seconds) MfloD

1 606 1.00 17
2 310 1.95 33
3 211 2.87 48

Table 5.1

About 25% of the elapsed time is spent on transmitting submatrices to
and from the shared memory. To see roughly where this percent comes
from consider the update B #- (i . wYT)TB of a 1000-by-500 submatrix B
in shared memory where W,Y e R100 x20 . If this update is performed at a
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rate Of 30 1Mb ps then approximately 1.3 seconds must be devoted to
computat ion. To transf er B to or f rom shared memory requires about .14
seconds. Thus, the traction of time spent on communication is
approximately .18 --.28/1.58

We next discuss an example where the load balancing isn't quite so
nice resulting in a degradation of performance. In the example m =5040,
mo =1040, n z500, q =13, anrdn=-- :n 2 =40, N3 = 20. Three APs were
used and thus block column tasks are assigned as f ol lows:~

API (1,4,7,10,13) AP2 4-C2.5.8,11) AP3 -(3,6,9.12)

Because only five steps are required to process each block column, there
are never more than five eactive" tasks at any, one time step. This makes
load balancing a little problematical. The following table indicates the
time (in seconds) that each AP spends computing at each timestep.

Time Step AP, AP2  AP3

13.52 0.00 0.00
2 3.64 3.15 0.00
3 3.64 3.39 2.82
4 3.64 3.42 3.16
5 5.85 3.39 3.16
6 3.10 5.31 4.83
7 2.70 2.82 4.83
8 2.70 2.46 2.58
9 3.88 2.46 2.24
10 2.05 3142 2.24
if 1.76 [.79 3.01
12 1.76 1.52 1.54
13 1.99 1.52 1.30
14 .62 1.52 1.30
15 .43 1.61 1.30
16 .43 0.00 0.13
17 .43 0.00 0.00

Table 5.1
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The time required for the entire computation is 51.2 seconds, the sum or
the maximum times in each row or the table. if computation was equally
shared at each time step then approximately 38.1 seconds would be
required for the complete computation

The somewhat inefficient use of the APs highlighted by the second
example could be rectified in several ways:

I. Choose a smal ler in0 . This would have the effect of increasing the

number of tasks to be shared at each time step.

2. Vary the block column widths so as to even out the update work.

3. Instead of letting the AP that generates a 0 be entirely responsible
for its application, share the update.

We have not fully explored these possibilities. Note that the first and
third suggestions imply smaller matrix multiplications and thereby
reduced 164/MAX performance.

A more promising way to address the load balancing issue would be to
incorporate a dynamic scheduling of tasks as is discussed, for example, in
George, Heath, and Liu (1985) and Dongarra. Sorenson, and Sameh (1986).
One way to do this is to order the tasks (t,j) defined in S4as follows:

(1.1) ,(1,2),,(1,q),(2,1),(2,2),_,(?.q),(t f,1),,(t f~q) .I

After completing a task each AP would go to this list and "grab" the next
available task subject to rules that preserve the integrity of the overall
procedure. We will report on this elsewhere.
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NOMPARAMETRIC ESTIMATION FROM QUEUES
ARISING IN STAGGERED ENTRY CLINICAL TRIALS

Michael J. Phelan and N.U. Prabhu
Mathematical Sciences Institute. Caldwell Hall

Cornell University, Ithaca, NY 14853

Abstract: In clinical trials with staggered entries and fixed duration
of study, patients enter at random epochs and are put on test. The
objective is to study survival times from a principal cause A, but
factors such as end of study or patient withdrawal make it impossible
to observe the survival times (censoring). We consider two different
situations. (1) For some patients death may actually be from a cause
other than A, say B (competing risks). It is desired to study the
survival times associated with both causes A and B. (2) A certain
number m (Q 1) treatments are available and each entering patient is
diagnosed and assigned to one of these treatments. The objective is to
study the survival times from cause A under these treatments. These
problems are formulated in terms of queueing models, for which it is
desired to obtain nonparametric estimates of service time
distributions. We investigate an infinite server model to study case
(1) and an m-station model for case (2). The input in both models is a
point process. We observe the system over a finite time-interval
[O,t], with t fixed. The data collected consist of the arrival
epochs, service times of the customers who arrive during [O.t], with
some of the service times partially observed, and (in Model 2) delays
experienced by them before service. Our estimators are martingale
estimators, for which we establish consistency and weak convergence (as
t -0 00) of the normalized difference to a Gaussian process. We present
the results for Model 1. Work on Model 2 is in progress.

Keywords: Clinical trials, censoring, survival times, queues, counting
proqesses, martingales, product-limit estimators.
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I. Introduction

The estimation problems that we consider arise in the context of

clinical trials with staggered entries and fixed duration of study.
Patients enter the study at random epochs and are put on test (for
example, the patient is treated by a drug therapy). Typically, the
objective is to study a patients' time of death (survial time) from
cause A, such as cancer or AIDS. Factors such as end of study or
patient withdrawal make it impossible to observe patients' time of
death (censoring). We consider two different situations.

(1) Entering patients are put on test immediately. For some
patients. death may actually be from a cause other than A, such as
toxicity. Denoting this second cause as B. we say that A and B are
competing risks. In such situations it may be important to study the
hazard functions associated with both causes A and B, rather than A
alone, as is usually done. Thus the observed survival time of each
patients is the shorter of the survival times from A and B.

(2) On some occasions there are a certain number m (Q 1) of
treatments available and each entering patient is diagnosed immediately
and assigned to one of these treatments depending on factors such as
the patient's background and state of health. Furthermore, limited
availability of the facilities used in the therapy may cause delay
between the patient's time of entry and the actual time he is put on
test. The objective is to study the survival times associated with the
m treatments.

Situations described above lead to the following queueing models.

XMode 1.

(1) Let TO,Tl.T 2 .... denote the arrival epochs of the succes-

sive customers. We assume that the point process T = {Tn . n 0)

satisfies the following conditions:

(i) To = 0. (ii) Tn ( - (n 1). and (iii) Tn+l > 'rn . Tn T ""

Let N = {Nt.t 0) denote the counting process generated by the

process Tr. Then Nt gives the number of arrivals during a

time-interval (Ot]. Here N has right-continuous sample paths with
left limits, jumps of size 1 and N0 = 0. Thus the input into the

queueing system is described equivalently by N or T.

(2) Each customer brings two demands for service. Let (XnY n)

denote the service times of the two demands of the nth customer
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(n 1). We assume that {X n 1) and (Y , n 1) are

independent sequences of mutually independent random variables with
common distributions F and F2 , respectively, both concentrated on

(0.00). We also assume that these service times are independent of the
input process.

(3) There are an infinite number of servers, so that there is no
waiting line. However, each server meets only the demand that needs
the shorter service time for the customer served.

Our objective is to estimate the distributions F1 and F2  of

the service times of the two demands. For this purpose we observe the
system over a time-interval (O,t]. with t fixed. The data consist
of the arrival epochs and the service times actually received by the
first Nt customers, but some of these service times may only be

partially observed; namely, those customers with T n + min(Xn Yn) > t.
for whom we only know that the service time min(X nY n) ) t-rn -

Our estimators for F1 and F2 are martingale estimators. The

martingale property leads to proofs of their "consistency and the weak
convergence (as t -* m) of the normalized differences to a Gaussian
process. These results are stated in section 3. Details are given
elsewhere (Phelan and Prabhu (1987)). We make only a mild assumption
concerning the rate at which Nt goes to infinity. Thus we avoid
conditions such as N /t -+ constant > 0 in some sense, as is often

imposed in situations involving random sample sizes. This shows the
advantage of our approach based on martingale properties.

Model 2.

(1) Let TOT 1,T2,.... denote the arrival epochs of the

successive customers, where the point process T = (Tn , n 0) is as

in Model 1. We associate with T a random variable Z taking

values in E = {1,2.....m} in such a way that the marks
Z = (Z n n 0) may depend in an arbitrary manner on the process T

but may also involve some other randomization. Thus the input into
this queueing system is the marked point process {(r Z ). n 0).

n n
(2) There are m stations (1 m < -): each station being a

finite-server queueing system. The service times of customers served
at the ith station have a distribution F concentrated on (0.-).ie
Here the distributions F F F are all distinct. The customer

11 2..... m
arriving at the epoch Tn has a service time Xn having distribution

F whenever Zn = I (I e E, n 0). It is assumed that the X are
n

mutually independent, and moreover, they are conditionally independent
of the T , given the Z . Thus the event (Zn = i indicates that

n' n -
the customer arriving at rn is assigned to the ith station.
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(3) The queue discipline at each station is first come, first
served.

Our objective for this model is to estimate the distributions
F1 ,F2 . F of the service times at the m stations. The

observation scheme is exactly as in Model 1. but in addition we obtain
for each arrival a record of any delay experienced before service, and
which of the stations serves this customer. Work on this model is in
progress.

In the standard analysis of staggered entry clinical trials it is
assumed that the epochs of entry {En} of the patients are mutually

independent random variables and the duration of study is fixed. In
order to develop an asymptotic theory it is then assumed that the
accrual rate of patient entry increases over this interval. In the
terminology of this paper, {Tn} are the order statistics generated by
{E n}, so that the input of patients constitutes a special type of a

point process. This input model is described by Jennison and Turnbull
(1985). The possibility of the patient accrual rate increasing
indefinitely over a fixed time-interval can arise in some situations
(such as in the explosive pure birth process). However, in other
situations accruals increase by virtue of the increasing length of
study, which is our approach to the asymptotic theory.

2. The estimators in Model 1

The data described in section 1 can be conveniently summarized as
follows. For each n 1 define

C t = Wtx(Ont-T ) W = min(X Y nCt)

Here 7n = 1 iff the first demand of the nth customer is met. In the

terminology of survival analysis min(X nY n) is the survival time

induced by two competing risks, and C is called a random' n

right-cenoring time due to end of study in staggered entry clinical

trials. Thus 1-6t is the indicator of censoring and Wt is the
n n

observed randomly right-censored survival time. In the present context

S t is the observed service time, = 1 iff the nth customer has
n n

t '
arrived and completed his service before time t, and 6T1 = I

tn n

(5(I-i) 1) iff the server meets this customer's first (second)
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demand. so that his service time is Xn(Yn). Our observation scheme

yields the data

(2.1) {(Wt.6t.n), n = 1.2,....N

from which we seek to estimate the distributions F1 and F The

estimators are actually based on the statistics

(2.2) N(it) = {s (it),s 0) (i = 1.2); T(t) = {i(t), s 0).

where

(2.2a) (1, t)=i (t S t
(2.2b) (-2l (t) = t I(W s. 6ttn = 1)

sn nn

n=l

n=l

n=l

Here N (i.t) is the number of customers whose service times are less

than s among those who arrive and complete their service before time

t. and whose ith demand is met (i = 1.2). Also. Ys(t) is the number

of arrivals in (O,t] whose service times (complete or partial)
exceed s.

Our estimation procedure yields estimators of F1 and F2. as

well as their associated cumulative conditional rate functions b and

b 2 defined by

(2.4) bi(t) ( f [1 - F(s-)] dFi(s) (i = 1,2. t -> 0).
(Olt]

are provided by the processes Bt(i) = Bs(i ) . s > 0},
^ ^t

and Fi(t) = {Fs(i). s O} (i = 1.2) defined by

(2.5) Bt(i) = - (t)AN,(i.t) = ,u-l(t)dNu(i.t) (i = 1,2)

(where each term in the sum is interpreted as zero if both factors are

zero). and
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(2.6) F (1) = 1 - 11 (1 - ABt(i)) (i = 1.2),
5us u

where 3
AN(~)= N-it it

AB t(i) = Bt (1) - Bt_(i) (1 =1.2. 0 u s).
U U

For i = 1,2 in (2.5). each term in the sum is the proportion of

completed service times of ith demand equal to u (i.e. AN (i.t))
among those service times (complete or partial) which exceed u (i.e.
u (t)) from among those customers who arrive during the time-interval

(O,t]. Thus Bt(i) estimates the cumulative conditional service rate

for the ith demand. The expression (2.6) is an estimator of the
product integral of (2.4), which uniquely determines the distributions

1and F 2  from b1 and b2, respectively. The estimators F are

called product-limit estimators, where by virtue of our observation
scheme they are defined from a random number of partially observed
service times (cf. Gill (1980), who studies this type of estimator from
a fixed number of censored survival times).

3. Asvmttotic properties of the estimators in Model I

We state the asymptotic properties of the martingale estimators
(2.5) and (2.6). We begin with the problem of consistency. For s > 0
define y(s) = [1 - FI(s-)][l - F2(s-)] and 9 = sup{s: y(s) > 0}.

Suppose y(e) = 0.

Theorem 3.1 (Consistency). Let 9 and the function y be defined
above, and suppose that for s C [0,9). (N -N )/N -1-0 as t -*w.

t t-s t p
Then for u C [0,9) we have, as t -,

(3.1) sup IF (i) - Fi(s)l - 0 (i = 1.2).
sE[0.u] p

and

(3.2) sup IBt(i) - bi(s)l-# 0 (i = 1.2).
se[O.u] p
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According to Theorem 3.1. for large t, Ft(i) and Bt(i) areuniformly close estimates of Fi and bi (i = 1.2). respectively. on

subintervals in the intersection of the support of F1 and F2. It

turns out that, in addition, the normalized differences in (3.1) and
(3.2) converge weakly to Gaussian processes. For this purpose let
D(O) denote the space of right-continuous functions defined on [0,0)

iand having left-limits. Also. let Z = (Zs. s 6 [0.0)) and
5

aiW = {Wi. s E [0,6)} (i = 1.2) denote mean zero Gaussian processes of
5

independent increments and covariance functions

(3.3) (l-Abi(u Y(U)) db i(u), s E [0,6) for i = j
1 0

<W . wj>(s) =

0 for i A j.

and

(3.4) f (1- b ) 2d<Wi Wi >(s). s C [0,G) for i = j
1 0

<Zi .Z >(s) =

0 for i j.

Note that is independent of and that W is independent of

W2. We have the following theorem.

Theorem 3.2 (Asymptotic Normality). Suppose the condition of
Theorem 3.1 holds. Consider the normalize3d processes

(3.5) Ut = N(it(i)-Fi)/(l-Fi), Vt N(Bt(i)b) (i 1.2).

Then as t -.

(3.6) (UU t (z5.z2)

and

(3.7) (t'V t (W

in D(O) x D(8) endowed with the Skorohod topology. 0

5
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A Class of Diffusion-Type Probability Distributions

Siegfried H. Lehnigk

Research Directorate
Research, Development, and Engineering Center

U.S. Army Missile Command
Redstone Arsenal, AL 35898-5248

1. The Density Function

Associated with the Markov diffusion equation

I XX X - zt 0, z ' , , (1. a)

with diffusion and drift coefficients

2.2-2 ((x) : x

O(xx) = ocx(2-,-p)x 1- - 'x, (1.1 b)

and parameters oc > 0, > 0, p < 1, r E R, is the class of source

density functions

Il -(rp-RI)/2 (p,.R-I)/2 I2R
f(x) =b Iq(2(q l/) exp -((1. 2), (i.)

x>0.d xb- f yb- o exp -t o  k oIf o - I q F(r) a p
modified Bessel function of the first kind of order q From a
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statistical point of view, the parameters in (1.2) are b > 0 scale,

p < I initial shape, 8 > 0 terminal shape, and y ; 0 source. The

restrictions on p and $ imply q > -1.

The designation of y as a source parameter is based on the fact

[ 1], [21, that the function f(x) given In (1.2) has been derived from the

delta function initial condition solution (source solution) of (1.1) with

the delta function applied at t = 0 and y > 0. As y 1 0, f(x) reduces to

the well-known hyper-Gamma density (21, [3].

2. The Likelihood Function

Application of the source density (1.2) in statistical practice

requires a method to determine the numerical values of the

components of the parameter vector P (b, q, $, z), z = y exp -- rto,

relative to given statistical data (xv. f) (v = 1, ... , n) which

represent observations x. together with their relative frequencies

f.. To this end, the likelihood function associated with (1.2) will be

estab I ished.

In general terms, let f(x;P), x > 0, be a density function depending

on a parameter vector P . Let X. (v = 1, ... N) be random sample

values of a random variable X which is assumed to be distributed

according to f(x:P). The associated likelihood function is
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L(P) f(X ;P).

V,=1

If the set NO } contains the distinct elements xv (v = I ... n N)

with relative frequencies f. , the log-likelihood function is

+(P) = N- log L(P) = f,, log f(xv; P).
v = I

For the density (1.2) the function +(P) takes the form

+(P) log l - log b - i (2-2 -Dq)C - -q log z
2 2

-D 
n

b-B - b-z I + f. log Iq (rV)
V =I

r= 2 z $/ 2 b- $ exp -($p./2) , pv = log x,

B=B( ) f . expBp, , C f = const.

v=1 V= 1

The objective is to maximize +(P) in the interior of the

parameter domain b > 0, q > -1, > 0, z > 0. The equations 8+/8b

0, a+/aq = 0, at/a$ = 0, a+/8z = 0 show that the scale parameter can

be eliminated. In fact

0I = (I+q)-I (B - z).

Therefore, it is sufficient to maximize the function + (q,A,z) which

results from upon elimination of b
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Numerical solution attempts on the equations 8O*/8q = 0, 8 */a

= 0, E+*/8z = 0 by means of derivative-based methods have not been

satisfactory. Direct optimization techniques are under investigation.

Results will be reported upon when they become available.
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COLUMN MOVEMENT MODEL USED TO SUPPORT AMM

George B. McKinley
U.S. Army Engineer Waterways Experiment Station

Geotechnical Laboratory
Vicksburg, MS 39180-0631

ABSTRACT. For many years mobility maps have been created utilizing the
Army Mobility Model (AMM). These maps show the maximum speed which a vehicle
can attain in off-road terrain and on-road networks. These maps are useful in
comparing the performance of vehicles or as an aid in route selection. Three
additional computer models have been developed to support the AMM by
predicting the performance of military vehicles over digital terrain units
along a specified route. These three models are an Acceleration Model, a
Traverse Model, and a Column Movement Model. The Acceleration Model produces
a time versus speed curve for a vehicle along a specified route across a
terrain unit. The Traverse Model uses the Acceleration Model as a building
block and predicts a vehicle's performance along a specified route over a
series of terrain units. The Column Movement Model uses the Traverse Model as
a building block for predicting performance of a column of vehicles along a
specified route. The Column Movement Model maintains vehicle spacing within
the column in accordance with military doctrine.

I. TERRAIN DATA SELECTION. The terrain data required by the models may
be acquired using one of three basic methods. The first method consists of
surveying a traverse to determine slopes and curvatures. The courses are
concurrently subdivided into a number of segments (terrain units), each of
which should be nominally uniform with respect to values pertinent to m6bility
including surface roughness (rms elevation), slope, driver recognition
distance, radius of curvature, soil type, and soil strength. From these
measurements a digital terrain data base is developed for use with AMM
(Nuttall, Green, Dean, and Gray 1985).

A second method consists of using the Waterways Experiment Station's
(WES) Digital Road Net Data bases which exist for a selected few 1:50,000
scale map sheets in the Federal Republic of Germany. Software has been
developed at WES to select "best paths" on this network based on either time
or distance. This path selection is accomplished by use of a blind
bidirectional search.

The third method involves the manual selection of a path through an areal
map. This selection may consist of visually analyzing a speed prediction map
and choosing sufficient Universal Transverse Mercator (UTM) coordinates to
define the desired path. Software developed at WES will then create the
proper terrain file by either assuming linear movement between the specified
UTMs or by selecting the "best path" by use of the blind bidirectional search.

II. AMM. The AMM is a comprehensive analytical model designed to
evaluate objectively the on- and off-road mobility of vehicles by means of
digital computer simulation (Nuttall, Dugoff, and Rula 1974). First developed
in 1971, the AMM is the Waterways Experiment Station's living mobility model
and is modified as required, based on improved mobility algorithms and
customer needs. The AMM is organized as illustrated by the general flow
diagram in Figure 1.
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For its data base, the AMM requires quantitative input descriptions of
terrain, vehicle, and driver attributes as shown in Table 1. In somewhat more
detail, Table 2 describes how terrain data are portrayed in the AMM. Driver
attributes in ANN characterize the driver according to his ability to perceive
and react to visual stimuli affecting his behavior as a vehicle controller and
his limiting tolerances to shock and vibration. The influence on vehicle
speed of these latter driver attributes is taken into account by the vehicle
ride dynamics module of the AMM (Figure 1).

In following the general flow diagram in Figure 1, raw input driver and
terrain data first are adjusted to account for the influence of appropriate
"scenario" factors, such as season and weather. Terrain data in the AMM are
used to describe small patches or segments, each one of which is defined by a
set of values of terrain factor classes (Table 2) that is different in at
least one terrain factor class value from the sets of class values of all
contiguous patches.

As shown in Figure 1, input vehicle, driver, and terrain data are
modified by the vehicle data preprocessor, the vehicle ride dynamics module,
and the terrain data preprocessor. The vehicle data preprocessor is a part of
the main program of AMM, and is used once at the beginning of an AMM run to
compute vehicle power train and soil-running gear characteristics that are
repeatedly used in making subsequent vehicle mobility predictions for
individual areal patches or road segments.

The ride dynamics module operates on a stand-alone basis, and in effect
serves as a major preprocessor of input vehicle, driver, and terrain data
(Murphy and Ahlvin 1976). Data similar to the output of the ride dynamics
module may also be obtained by field testing of vehicles on ride dynamics and
obstacle test courses. From input vehicle, driver, and obstacle height data,
the ride dynamics module computes vehicle speed values at which a vertical
acceleration of 2.5-g's is experienced at the driver's station. The ride
dynamics module also computes, as a function of surface microroughness
(expressed as the root-mean square elevation (rms) of the effective profile),
speed values corresponding to limits of driver tolerance to random
vibrations. This tolerance is defined in terms of the vibrational power
absorbed by a person at a specific location in the vehicle, often taken as a
constant tolerance limit of 6-watts (Lins 1972). Currently, data
preprocessing in the ride dynamics module reduces dynamics-based predictions
in areal patches and road segments to a rapid table lookup process.

The terrain data preprocessor converts the ranges of values of terrain
factor classes stored in the terrain data base to the engineering values used
by subsequent AMM modules. Ordinarily, the value assigned for a given terrain
or road factor is the best-estimate value of that factor's class range. This
preprocessor also accounts for "scenario factors" by adjusting or selecting
among stored terrain or road factor values to reflect the influence of
variations in season, weather, day or night operation, and other factors.

Continuing in Figure 1, data acted upon by the three preprocessors next
are used in the vehicle performance prediction modules that are the heart of
the AMM--the areal patch module and the on-road segment module. The general
flow of the areal patch module is shown in Figure 2. Input to this module
from the vehicle data preprocessor includes the relation between vehicle speed
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and tractive force for the vehicle on a smooth, level, firm surface, and the
minimum soil strength that the vehicle requires to maintain headway on level,
weak soils. Using these data and appropriate data from the terrain data
preprocessor, the areal patch module checks for vehicle-obstacle interferences
(hangups), determines the total tractive force required to overcome terrain
impediments, and computes vehicle speed limited by the total motion-resisting
forces. This calculation involves interaction of the soils, slope, obstacle
traction, obstacle override, and vegetation impact and override submodels.
NOGO is called when vehicle hangup is predicted and when vehicle traction and
override force are computed to be insufficient to overcome resistances to
motion.

Next, the areal patch module selects the minimum speed among speed
limited by the resisting forces; ride-limited speed (obtained from the vehicle
ride dynamics module output data array); and visibility-limited speed (from
the visibility submodel). This speed is then modified to account for
acceleration and deceleration between discrete obstacles and maneuvering to
avoid vegetation and other obstacles. This procedure produces a maximum
vehicle speed predicted for a particular terrain unit and a particular
vegetation override/avoidance option. The procedure is repeated for the
vehicle operating up slope, down slope, and across slope, producing three
speed predictions.

Compared to areal (off-road) terrain, on-road terrain includes
considerably fewer factors that affect vehicle performance . Still, the on-
road module (the third AMM performance prediction module) has a computational
structure similar to that of the areal module. For the particular road
surface material of interest, values of tractive and rolling resistance
coefficients are obtained for the given wheeled or tracked vehicle operating
straightline and level at maximum speed. Separate speeds are then computed as
limited by available traction and countervailing resistances (rolling, grade,
and curvature); ride dynamics (absorbed power); visibility and braking; tire
load, inflation, and construction; and road curvature. The least of these
five speeds is assigned as the maximum for the on-road segment scrutinized.
Scenario options and combinatorial procedures to predict vehicle speed are
exercised in the on-road module similarly to the method previously described
for the areal patch module.

III. ACCELERATION MODEL. The Acceleration.Model predicts speed versus
time relationships for a vehicle accelerating on a defined surface (road or
areal). The vehicle's acceleration is modeled using tractive force versus
speed data obtained from the AMM which has been modified to account for
slippage of the vehicle's running gear in the soil. The vehicle accelerates
using the amount of tractive force available beyond that which is required to
overcome the sum of the resisting forces (usually only motion resistance,
since acceleration tests are normally run on terrain with no slope or
vegetation). The time and distance for acceleration are calculated for each A
segment of the curve. Two different methods are used to calculate these
values. If acceleration is known to not be constant (i.e., the forces that
serve as endpoints of the current line segment are unequal) then acceleration
is modeled as if it were linear between the two speeds. This is accomplished
in two steps. First the time to accelerate between the two speeds is
calculated as follows:
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DELTAT VMR/A • LOG((A•VX B)/(A•VI B))

where
DELTAT = time necessary to complete acceleration step (seconds)
VMR = vehicle's mass modified for inertia (slugs)
A = slope of current line segment of curve
V1 = velocity at start of acceleration step (ft/s)
VX = velocity at end of acceleration step (ft/s)
B = y intercept of current line segment of curve

Once the time has been calculated the distance which will be covered during
the acceleration step may be calculated as follows:

DELTAX = VMR * (A•V+B)/(A•*2)•(EXP(A/VMR•DELTAT)-I.)-B•DELTAT/A)

where
DELTAX = distance covered during acceleration step (ft)
VMR = vehicle's mass modified for inertia (slugs)
A = slope of current line segment of curve
V1 = velocity at start of acceleration step (ft/s)
B = y intercept of current line segment of curve
DELTAT = time necessary to complete acceleration step (seconds)

In the case of constant acceleration, the acceleration is calculated using
F=MA and time and distance are calculated using the equations of motion with

constant acceleration. In both cases the vehicle's mass is modified by a
factor which simulates the inertial mass of the rotating parts which must be
accelerated when the entire vehicle is accelerated. The vehicle's mass is
modified as follows:

VMR = VM * (RMF1+RMF2*(FAVGO*2))

where
VMR = vehicle's mass modified for inertia (slugs)
VM = vehicle's unmodified mass (slugs)

RMF1 = 1.14 if there is a tracked assembly on the vehicle
= 1.06 otherwise

RMF2 = 0.O02*(IDIESLOCID)**1.68 /(NCYLOGCW)*TCOR * - RR/ETA/QMAX *02

where
IDIESL = 3 if engine is turbine

= 2 if engine is a two cycle diesel
= 1 otherwise

CID = engine displacement in cubic feet (rated horsepower for
turbine)

NCYL = number of cylinders (1 is used for turbine)
GCW = gross combined weight of vehicle
RR = rolling radius (ft) if wheeled assembly or

sprocket pitch radius (ft) if it includes a tracked assembly

ETA = 0.7 if there is a tracked assembly present
= 0.9 otherwise

QMAX = maximum engine torque (ft-lbs)
FAVG z tractive effort at center of acceleration step (ft.-lbs.)
TCOR = 0.125 if engine is a turbine

= 1 otherwise
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These calculations are performed for each segment of the tractive force versus
speed curve until the vehicle's maximum predicted speed is attained. Example
outputs from the Acceleration Model are shown in Figures 3 through 5.

IV. TRAVERSE MODEL. The WES Traverse Model predicts the time required
by a defined vehicle to cross a series of terrain units (AMM road or areal
format). The vehicle is first run over the digital terrain using the AMM,
thus computing all the values necessary for predicting the vehicle's
performance over each terrain unit.

The traverse begins with the vehicle at the start of the first terrain
unit at zero velocity. When the vehicle first accelerates and upon entering
any other terrain unit, the model finds the corresponding tractive force for
the vehicle's current velocity. If this tractive force is found equal to the
total of the resisting forces in the, current terrain unit then the vehicle
will not accelerate. If the vehicle is found to accelerate, then the time and
distance for acceleration are calculated using the same algorithms utilized by
the Acceleration Model.

Each terrain unit has two speeds associated with it. One speed is the
predicted speed, which is the maximum speed which may be reached by
acceleration from a lower speed in that terrain unit. The other speed is the
maximum speed at which a vehicle may enter the terrain unit. The limit is the
lowest speed chosen by the AMM from among the ride, visibility, and curvature
(when on-road) limited speeds. The only stipulation for a vehicle's entering
speed is that it be less than or equal to the limiting speed. In the case of
a soil-strength limited terraih unit a vehicle is allowed to enter at a higher
speed than that predicted maximum, but the speed must still be less than or
equal to the limited speed. In this situation the vehicle's deceleration will
be modeled by moving backwards along the tractive force versus speed curve.

The vehicle's speed at the end of each acceleration step is compared to
the limited speed of the next terrain unit. When the vehicle's speed becomes
greater than that limit, the distance required to brake from the current speed
to that limit is computed. This braking is modeled by allowing the
application of the maximum braking force available for that vehicle on the
current terrain. The equation F = MA is used to compute this constant
deceleration. If the sum of the distance used for acceleration and that
required for braking becomes greater than the length of the current terrain
unit, then the intersection of the current acceleration step and the braking
line is computed. From the time and distance used for both acceleration and
braking, an average velocity for the terrain unit can be calculated. If the
vehicle reaches the predicted speed for the terrain unit then the time and
distance at that speed will also be used to calculate the average speed. If
the application of brakes were ever necessary over an entire terrain unit plus
portions of a previous unit, the model would revert back to that previous

terrain unit and take proper action to correct the exiting speed of that unitI, to allow for proper braking in the current unit.
The exiting speed of a terrain unit is used as the entering speed for the

following terrain unit. The vehicle's time in each terrain unit and the
length of the unit are used to compute an average speed for that unit along

with an average speed for the distance up to and including that unit.

I605
4. . ~. J%, .*p|



V. COLUMN MOVEMENT MODEL. The WES Column Movement Model computes the
total time required for a selected group of vehicles to traverse a series of
terrain units. The vehicles, which constitute the column must follow one of
three sets of basic march orders. The first column type is an infiltration in
which each vehicle moves at its best speed over the entire route. Vehicles
travel together in formation, but vehicles are allowed to pass each other when
possible. The vehicles leave the staging area at random intervals of 1 to
10 minutes in duration.

The second column to be modeled is the open column. In the open column
vehicles travel in single file over the entire route. The vehicles must
maintain a spacing of between 50 and 100 meters. Each vehicle will start
20 seconds after the previous vehicle if this will allow for proper vehicle
spacing to be maintained. If the previous vehicle has reached the maximum
spacing limit in less than 20 seconds then the next vehicle is allowed to
start.

The third type of column to be modeled is the closed column. The closed
column is identical to the open column, except that the vehicle spacing must
remain between 10 and 50 meters. The optimum start interval is changed to
9 seconds for the closed column and is used as in the open column.

Each vehicle's acceleration and braking are modeled in a manner similar
to the acceleration and braking modeled in the traverse model. The major
difference is that each vehicle's progress is monitored at a user specified
time interval. A small interval (5 seconds or less) is preferred, since it
should yield more accurate modeling of vehicle interaction.

Each time interval may be evaluated twice. First each Vehicle will
traverse the terrain, obeying terrain speed limits, until the time interval is
over. Each vehicle's entering speed for each terrain unit and time spent in
each terrain unit are saved for possible later modification.

Next the position of each vehicle is checked to insure that the column's
unity is maintained. If distances between vehicles are too large or too
small, certain vehicles are required to proceed at a slower pace over the time
frame.

VI. CONCLUSIONS. The above describes three programs serving as
extensions to the AMM, which predict vehicle mobility when a path consisting
of known terrain units is specified as input. The Acceleration Model predicts
time, speed, and distance relationships for a vehicle over a single terrain
unit. The Traverse Model accurately predicts vehicle performance over a
series of terrain units. The Column Movement Model adequately represents the
movement of groups of vehicles over a sequence of road and areal terrain units
in which their interaction with both the terrain and each other's position are
modeled. Future plans include applying the methodology utilized by the Column
Movement Model to additional unit formations of varying size and composition.
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Figure 3. Sample speed versus time plot for M2 ... ,
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Figure 4. Sample speed versus distance plot for M2
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M113 M113 M60A3 M113 M60A3 M60A3
TIME MILES MILES MILES MILES MILES MILES
0 0 45 0.220 0.192 0.164 0.157 0.136 0.129
0 1 30 0.447 0.437 0.409 0.402 0.378 0.349
0 2 15 0.707 0.681 0.674 0.655 0.627 0.621
0 3 0 0.920 0.906 0.897 0.890 0.872 0.865
0 3 45 1.167 1.158 1.130 1.123 1.106 1.098
0 4 30 1.382 1.354 1.326 1.313 1.285 1.278
0 5 15 1.503 1.493 1.466 1.454 1.427 1.414
0 6 '0 1.646 1.618 1.590 1.575 1.547 1.527
0 6 45 1.846 1.821 1.799 1.776 1.764 1;746
0 7 30 2.057 2.028 2.000 1.979 1.957 1.941
0 8 15 2.234 2.216 2.189 2.182 2.163 2.147
0 9 0 2.350 2.333 2.320 2.302 2.293 2.269
0 9 45 2.534 2.506 2.489 2.466 2.438 2.415
0 10 30 2.646 2.618 2.590 2.562 2.534 2.506
0 11 15 2.860 2.832 2.805 2.783 2.776 2.750
0 12 0 3.067 3.039 3.011 2.983 2.977 2.964
0 12 45 3.307 3.286 3.260 3.232 3.205 3.199
0 13 30 3.579 3.550 3.525 3.497 3.469 3.458
0 14 15 3.818 3.790 3.767 3.756 3.728 3.717
0 15 0 4.028 4.004 3.980 3.960 3.932 3.904
0 15 45 4.241 4.228 4.205 4.182 4.154 4.126
0 16 30 4.443 4.415 4.388 4.369 4.341 4.318
0 17 15 4.659 4.637 4.610 4'598 4.575 4.554
0 18 0 4.835 4.807 4.779 -4.765 4.741 4.723
0 18 45 5.036 5.008 4.986 4.964 4.936 4.914
0 19 30 5.233 5.215 5.202 5.179 5.151 5.122
0 20 15 5.473 5.445 5.439 5.429 5.401 5.373
0 21 0 5.666 5.638 5.610 5.597 5.569 5.548
0 21 45 5.867 5.839 5.811 5.784 5.756 5.734
0 22 30 6.069 6.041 6.013 6.006 5.985 5.965
0 23 10 6.094 6.094 6.094 6.094 6.094 6.094

VEHICLE TIME TO FINISH
M113 0 22 36
M113 0 22 42
M60A3 0 22 51
M113 0 22 52

M60A3 0 23 1
M60A3 0 23 6

Figure 6. Sample output from the WES Column Movement Model
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Table 1

Terrain, Vehicle, and Driver Attributes

Characterized in the AMM Data Base

Terrain Vehicle

Surface composition Geometric characteristics
Type Inertial characteristics
Strength

Mechanical characteristics

Surface geometry
Slope
Discrete obstacles
Roughness

Vegetation

Stem size and spacing
Visibility

Linear geometry
Stream cross section
Water velocity and depth

Driver

Reaction time

Recognition distance

Vertical acceleration limit

Horizontal acceleration limit
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Table 2

Terrain Data Required for AMM

No. of
Factor

Terrain or Road Factor Description* Range Classes

Off-Road

1. Surface material

a. Type USCS/other NA 4
b. Mass strength CI or RCI 0 to >280 11
c. Wetness NA NA 4

2. Slope Percent 0 to >70 8

3. Obstacle

a. Approach angle Degrees 90 to 270 14
b. Vertical magnitude cm 0 to >85 7
c. Length m 0 to >150 7
d. Width cm 0 to >120 5
e. Spacing m 0 to >60 8
f. Spacing type NA NA 2

4. Surface roughness (x 10) rms, cm 0 to >7.5 9

5. Stem diameter cm 0 to >25 8

6. Stem spacing m 0 to >20 8

7. Visibility m 0 to >50 9

8. Left approach angle (LA) Degrees 90 to 270 20

9. Right approach angle (RA) Degrees 90 to 270 20

10. Differential bank height or
differential vertical
magnitude (A) m 0 to >4 9

11. Base width or top width m 0 to >70 21

12. Low bank height or least
vertical magnitude (LBH) m 0 to >6 8

(Continued)
AMM can accept terrain data in either inch-pound or metric units of mea-

surement. Data preprocessors in AMM convert values of all input data to the

inch-pound system before calculations involving these data occur.
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Table 2 (Concluded)

No. of
Factor

Terrain or Road Factor Description* Range Classes

Off-Road (Continued)

13. Water depth (D) m 0 to >5 6

14. Water velocity mps 0 to >3.5 6

On-Road

15. Surface material

a. Type NA NA 4
b. Surface strength CI or RCI 0 to >280 11

16. Slope Percent 0 to 50 8

17. Surface roughness (x 10) rms, cm 0 to 4 9

18. Curvature Degrees <140 to 180 9

19. Visibility m 0 to 91.4 9
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INFLUENCE OF REFLECTED SHOCK WAVES ON A HYPERSONIC SHAPED CHARGE JET

H.W. Meyer
J.E. Danberg

Ballistic Research Laboratory
Aberdeen Proving Ground, Md. 21005

Abstract

Considerable research has been devoted to shaped charge jet formation and
penetration but little work has been reported on the aerodynamic forces on the
jet particles, particularly the interference caused by near by surfaces. The
object here was to develop numerical methods and apply them to this problem. A
Godunov inviscid technique has been used along with high temperature thermody-
namic properties to obtain the flow field in front of a hemisphere. This was
used as the initial condition for the computation of the flow field in the
annular region between the jet and a surrounding cylindrical tube. Computations
were done at Mach number 4 and compared to experimental data. The jet problem
(Mach number 20.45) was then solved.

I.INTRODUCTION

The objective of this effort is to study the hypersonic flow field
associated with a shaped charge jet. The ultimate concern is the evaluation of
how and to what extent aerodynamic effects cause perturbations to the jet. The
work to be described here has concentrated on development of numerical
techniques applicable to this problem.

A shaped charge warhead consists of a cylindrical explosive charge with a
conical cavity in one end. The cavity is typically lined with a hollow coni-
cal copper liner of about 2 mm thickness. The shaped charge jet is formed when
a detonation wave, traveling through the surrounding explosive, implodes the
liner upon itself with such force that a stream of copper is ejected along the
axis of the cone. A precision warhead as shown in Figure 1 produces a thin jet
traveling at a speed above Mach 20 at standard sea level conditions.

A flash radiograph of a jet from the BRL 3.2 inch precision shaped charge
is shown in Figure 2. The break up into many small particles is characteristic

of all jets. As long as the particles remain aligned, the jet is highly lethal.
If the jet particles are perturbed because of aerodynamic interference between
particles or because of wave reflections from near by surfaces, its lethality
can be seriously degraded.

While considerable research has been conducted in the fields of jet
formation and jet penetration, little effort has been devoted to studying the
aerodynamic forces that influence the jet. Many examples have been obtained
which show jets disturbed in passing through but not touching various geo-
metries, and it was concluded that aerodynamic forces were most probably

617I



responsible. Experiments were initiated to eliminate the aerodynamic factors by
producing a jet in a vacuum. However, the experiments were inconclusive because
of the difficulty of maintaining the vacuum during the penetration process.

Yen', under contract to the Ballistic Research Laboratory, attempted to
developed a better understanding of the interaction of the flow field with the
jet. His effort concentrated on the wake behind the particle and provided very
limited results.

The approach adopted in this work is to extend and apply techniques
developed for solving the ballistic reentry problem to the special situation of
the shaped charge jet as it passes near interfering surfaces. The method
employed was originally developed by S.K. Godunov2 '3 in 1959-1961 and applied to
the hypersonic blunt body by Masson et a14 . The technique has also been used at
BRL to simulate the flow field near the muzzle blast'.

The numerical method will be briefly outlined in the following section.
The basic technique for solving the conservation equations has been extended by
coupling to it a program to compute the real gas thermodynamic properties
appropriate to the hypersonic flow following the methods developed by Hansen.
The real gas jump conditions across the shock waves in the flow are evaluated
using a method proposed by Colella and Glaze.

II.GODUNOV TECHNIQUE

In this section the essential elements of the Godunov method are described
as applied to the simplest case of one dimensional flow. The applicable
conservation equations for the axisymmetric flow which are used in the
computation are then described, followed by the discretization actually employed
in the solution algorithm. Finally in this section some details of the real gas
method are presented.

1-D GODUNOV-RIEHANN TECHNIQUE

The conservation equations for mass, momentum and energy are written in
integral form and applied to the physical domain divided into cells of width Ax
as shown in Figure 3. At an initial instant the flow variables in each cell are
defined as spatial average values. Discontinuous changes of properties in
general occur at the cell boundaries. At the beginning of a time step, the
imaginary diaphragm at the cell boundary is ruptured and compression and
expansion waves are assumed to propagate into adjacent cells. This is analogous
to the classical shock tube problem. The conditions behind these waves are well
known from shock tube theory. The fluid between the two waves can be considered
as two fluids, one from each cell, separated by the contact discontinuity. The
pressure and velocity of the gas is the same on both sides of the contact
discontinuity. As the waves propagate the original cell boundary lies in one of
four possible flow regions. Both waves may move into the cell to the right, or
both waves move to the left. In either of these cases the flow at the boundary
is defined by the undisturbed flow in left or right cell respectively. The
boundary can be between the two waves whereupon the flow is determined by
whether the contact discontinuity moves in the positive or negative direction.
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The basic equations to be solved for conditions behind the waves can be
written as the following two simultaneous equations:

a(U2 - u) + (P2 - pI) - 0 (1)

b(u. - u4 ) - (p3 - p4 ) - 0 (2)

where the subscripts refer to regions defined in Figure 3. Because of
continuity across the contact discontinuity u2 - u3 - uo and P2 - P3 - Po. The
coefficients a and b are mass velocities determined by the respective wave
speeds and the density across the waves. In general a and b are functions of
the pressure behind the waves which makes the solution for Po and u o nonlinear.
Iterative techniques are used to solve Equations (1) and (2) except when the
waves are weak, in which case a linear approximation is valid. With a
sufficiently fine grid most of the shock free flow field can be obtained using
the simpler linear approximation. The real gas relationships between thermody-
namic variables also complicates the calculations and will be discussed later.

The essential element in the technique is that the properties are known and
constant at the cell boundary until the arrival of waves developed at
neighboring cell boundaries. If the time step of the calculation is kept less
than the time required for the waves to cross the cell then the fluxes at the
cell boundaries are easily evaluated. The average properties in the cell at the
end of the time step are then determined as the initial value plus the fluxes
across both boundaries during the time step. Thus a time marching scheme is
defined which progresses from an imposed initial condition to a steady state.

In the case of an adaptive cell distribution, the fluxes are calculated
taking into account the relative velocity between the fluid and the moving cell
boundary.

CONSERVATION EQUATIONS

The fundamental elements of the Godunov method described for the simpler
one dimensional problem have been extended by Godunov and many others to two
dimensional axisymmetric flows. The flow near the leading element of the shaped
charge jet is assumed to be axisymmetric thus the starting point is the
conservation equations in cylindrical coordinates, as follows:

(t + ax(Pu) + (pv) + L- 0 (3)

(PU) + ( (pUv) +uv - 0 (4)
r ax r r r

8(pv) + a(Puv) +arL(P+pv2) + __ -0 5

2u+) + pve 2) + R(e+2 ) -0(6ax P ar p r p
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For the blunt nose part of the calculation it is convenient to define the
cells in a polar coordinate system because the blunt body shock wave is nearly 5
concentric to the spherical surface in the stagnation region. Figure 4
illustrates how the cell geometry is defined in this region. The shock loca-
tion is estimated initially and the grid dimensions are allowed to change in the
radial direction until the steady state shock position is obtained. The above
differential equations of motion are integrated over a cell area as shown in the
figure and Table 1 gives the resulting discretized equations. Note that R,U,V
and E are the density, x and r components of velocity and total energy
respectively, evaluated on the cell boundary. Thus these properties are
obtained from the solution of a Riemann problem at that boundary. The
subscripts indicate which boundary as defined in Figure 4. Note that on radial
boundaries the fluxes are evaluated using the velocity W which is the component
of the velocity vector normal to the cell boundary. On the moving
circumferential boundaries the flux is determined by the relative velocity
component normal to the moving element, (W-q). Pressure forces contribute to
the momentum equations depending on the orientation of the cell boundary
relative to the cylindrical coordinate system; thus the angles 0 and 0 which
specify the orientation of the boundary must be included.

In both the hemisphere and cylindrical computation the downstream boundary
was located in a supersonic flow region where the wave system moves down-
stream. Thus the flux conditions on the boundary of the cell are determined by
the properties of the cell, and no special boundary condition is required.

The last term in each equation caused some computational difficulties for
cells with the axis of symmetry as a boundary. Although the ratio of v/r is
finite on the boundary, its evaluation introduces errors which lead to
instabilities in the computation. One source of the difficulty is related to
discretization of the shock wave at the axis of symmetry where it should be
normal. In the present computations the slope of the shock at the first cell
with its boundary on the axis tended to an unrealistically negative value. By
arranging the cells so that the center of the first cell falls on the axis, the
normality of the shock on the axis is insured. This occurs because all
conditions on the two radial boundaries are forced to be symmetrical as the
appropriate boundary condition. The line segment representing the stagnation
region shock wave.is then automatically normal to the axis.

REAL GAS EFFECTS

In the initial phases of the development of the numerical code, a perfect
gas equation of state was assumed, ie.:

p - pRT (7) p

e. - (8)int f - 18

At Mach 20, however, the relationship between pressure and temperature and the %
other thermodynamic variables is much more complex. Although the magnitude of
the pressures calculated using perfect gas formulas are approximately correct,
the shock wave position and thus pressure distribution are strongly affected by
real gas density and temperature.
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The thermodynamic properties of high temperature air are computed from
approximate partition functions for the major components of air using a tech-
nique developed by Hansen7 . The model assumes air to be a mixture of 20 percent
oxygen and 80 percent nitrogen, all other components are neglected. Eleven
species are considered including three levels of ionization of oxygen and
nitrogen.

The method calculates all the thermodynamic variables given the pressure
and temperature of the gas. This is inconvenient when coupled to the Godunov
code because its primary dependent variables include density and energy. An
iteration procedure is required as an intermediate step to search for the cor-
rect values of temperature and pressure which correspond to given density and
energy.

A second major problem with adding real gas effects is that the above
search for the thermodynamic variables makes the computation of even the weak
wave Riemann problem nonlinear and iterative. In order to avoid increasing the
running time of the computation extensively, a procedure suggested by Colella
and Glaz8 has been adopted. Their method permits evaluation of the pressure and
velocity at the contact discontinuity based on conditions in adjacent cells. In
the strong shock case, it is still necessary to iterate as in the perfect gas
case, but it is not necessary to iterate at the same time to find the
thermodynamic variables.

III.RESULTS

The results of the computations are summarized by first considering the
hemisphere problem at the relative low speed of Mach 4 where experimental
verification can be made. Some results for the flow downstream between con-
centric cylinders ari considered to illustrate the application of the shaped
charge jet passing through a cylindrical tube. Finally hemisphere and cylinder
computations at Mach number 20.45 are presented.

HEMISPHERE AT MACH NUMBER 4

Figure 5 shows the shock wave stand-off distance plotted around the hemi-
sphere and compared to experimental datag . This Mach 4 case was chosen for
these initial code verification runs because of the existence of the experi-
mental wind tunnel observations and because this was one of Godunov's original
test cases. These results were obtained with a relatively coarse grid of only 8
points radially and 25 cells in the angular direction. Tests with other grid
distributions showed only very minor changes. Figure 6 shows the corre-
sponding pressure distribution on the hemisphere again compared to the same
experiment. Note that the real gas form of the code was used even though the
conditions were essentially those of a perfect gas. The code under predicts the
measured stagnation pressure by less than 2.5 per cent. There is a small kink
in the pressure curve at about 45 degrees from the stagnation point which
appears to be associated with the sonic line in the flow field. It is some what
exaggerated because of the coarse grid used. The mass density distribution is
shown in Figure 7 and the current calculations are compared to the original
results of Godunov and to a well know calculation of Belotserkovskii'0 using the
method of integral relations. The Belotserkovskii calculation is about 2
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percent higher at the stagnation point but otherwise the agreement is very good.
Godunov's calculation is lower than the others and is significantly different at
the stagnation point. The reason for the disagreement appears to be because
Godunov's grid provided for a grid boundary on the line of symmetry which
introduced errors that do not disappear as steady state is approached.

ANNULAR REGION AT MACH NUMBER 4

Once the hemisphere computation was completed, it was used to provide
upstream boundary conditions for the computation of the flow between a cylin-
drical afterbody and a concentric wall. This configuration is meant to simu-
late a jet passing through a cylindrical tube. Unlike the hemisphere computa-
tion, however, the grid or cell distribution was fixed in space with 40 cells
radially and 120 axially. Uniform initial conditions were assumed and the code
marched in time until steady state was achieved. Figure 8 is an example of a
contour plot of the pressure from such a calculation. The outer wall diameter
is 1.766 body diameters. The hemisphere shock wave reflects off the outer wall
and produces a nearly normal shock standing on the body. Such shocks impinging
on the jet could produce strong aerodynamic forces at the higher Mach numbers of
interest.

MACH NUMBER 20.45 RESULTS

Figures 9 and 10 show the results of the hemispherical computation for Mach
number 20.45. The stagnation pressure in this case is only a few percent above
the 539 atmospheres predicted by perfect gas theory. The result of the cylinder
computations is shown in figure 11, for a tube to jet diameter ratio of 2.50.
The bow shock is plainly visible. The shock angle at the wall is 12.80, and the
reflection occurs at a position three body diameters downstream of the tangent
point between the hemisphere and cylinder. The pressure on the wall behind the
reflected wave is 71 atm. The reflected wave can be traced back to the body,
where it again reflects. The pressure behind this reflection is 34 atm.

IV. SUMMARY AND CONCLUSIONS

This report has presented the current status of an on going program to
calculate the aerodynamic forces on a hypersonic shaped charge jet. A numerical
technique based on the work of S. K. Godunov has been *modified consistent with
the blunt jet configuration penetrating a cylindrical tube and extended to
include real gas properties. The ability of the code to simulate Mach number 4
conditions -or which experimental and other numerical data are available has
been used to validate the procedure. Numerical results have been completed for
the Mach number 20.45 jet problem. These computations will be compared to
experimental measurements of the reflected wave from an actual shaped charge jet
going through a cylindrical tube. Results from these experiments should be
reported in the near future.

REFERENCES

1. Yen, S.M.,"Interactions Between Multiple Objects in a Hypervelocity Flow
Regime," Final Report on Contract DAAK 11-81-C-0011, Aeronautical and

622

"po,%
U 0 ,J



Astronautical Engineering Department, University of Illinois, Urbana
Illinois, June 1983.

2. Godunov, S. K., "Finite Difference Method for Numerical Computation of
Discontinuous Solutions of the Equations of Fluid Dynamics," Matematicheskii
Sbornik, Vol. 47(89) No. 3, p. 271, 1959, Translated by 1.0. Bchachevsky.

3. Godunov, S.K., Zabrodyn, A.W. and Prokopov, G.P.,"A Difference Scheme
fot Two-Dimensional Unsteady Problems of Gas Dynamics and Computation of
Flow with a Detached Shock Wave," Zhurnal Vychyslitelnoi Matematiki i
Matematicheskoi Fiziki, Vol. I, no. 6, pp 1020-1050, 1961, Translated by
1.0. Bohachevsky, Cornell Aeronautical Laboratory, Inc.

4. Masson, B.S., Taylor, T.D. and Foster, R.M., "Application of Godunov's
Method to Blunt-Body Calculations," American Institute of Aeronautics and
Astronautics Journal, Vol. 7, No. 4, pp.694-698, April 1969.

5. Widhopf, G.F. and Schmidt, E.M., "Time-Dependent Near Muzzle Brake Flow
Simulations," American Institute of Aeronautics and Astronautics/American
Society of Mechanical Engineers 3rd Joint Thermophysics, Fluids, Plasma and Heat

Transfer Conference, paper AIAA-82-0973, St. Louis, Missouri, June 1982.

6. Fansler, K.S.. "Gasdynamic Quantities about a Ramjet Projectile while in
the Transitional Ballistics Region," American Institute of Aeronautics and
Astronautics 12th Atmospheric Flight Mechanics Conference, paper AIAA-85-1840-
CP, Snowmass Colorado, August 1985.

7. Hansen, C.F., "Approximations for the Thermodynamic and Transport Properties
of High-Temperature Air," National Aeronautics and Space Administration
Technical Report R-50, 1959.

8. Colella, P. and Glaz, H.M., "Efficient Solution Algorithms for the Riemann
Problem for Real Gases," Journal of Computational Physics, Vol.59, pp. 264-289, .
1985.

9. Belotserkovskii, O.M.,(ed). "Supersonic Gas Flow Past Blunt Bodies:
Theoretical and Experimental Studies," Tr. Vychisl. Tsentr. Akad. Nauk SSSR,
published by Computing Center AN SSSR, Moscow, (2nd Edition). 1967, US Army
Foreign Science and Technology Center Technical Translation, FSTC-HT-23-447-68,
1968.

10. Belotserkovskii, O.M., "On the Computation of Flow around Axisymmetric
Bodies with a Detached Shock Wave on an Electronic Computer," Prikl. Mat. i.
Mekh, Vol. 24, No. 3, pp 511-517, 1960.

623

%.

,.P,',7'p* ,.* V " " ., " % ." % %



I.'

S

N N NU ,

N i - -

* C

N 
a

N -
C C -

C ~Ji *

+ + 4. +

* U
-. N U

_C .C -.
C

.-. U,
*

3
N .-. 0 :3

- 43 U .1~.'
C. 

-

4. 4.

4,, :3 :3 4,

:3 0" 4.
0. :3 -.

0. = - C. '-a

.4. 4. + .4. S

- N

a a
- N

C C -

N U, U, a.
- C C

-.4 3
a "4 0 U, a

C. U :3
C.

_C :3 *6.
U, :3 + .4
:3 C. 4',

a'.

+ .~ + 4.

_C C 0

U, U, a.

-.4 -0. 
.44%

N 0 0
Ca UC. 0.

:3 4'

U, 0. 0. - 0 .4'.
[II 'S

0. :3 *
- .4. J-J 'S

:3 :3 3

C-

* 4. 4. 4.

N N W 4%S

_ - 4-4

U' . 44.4 A
-~ U 0

N c

.3 U, 2 .4.

E 0

_C C. U 0
U, 

~zS 4
:3 5

C.
C.)

'-a--- a- 4.~,4'~~~ ~

4- 4. 4. 0)

-. 0) ~1
£ * * *

N N N N C
0)

C C C 4-4

- -i--' -

~.

N N N

N - -

* I i 4-4

* N N N

N - -

624 - - -. ':

-a-

~



M6 DETONATOR

DET & BOOSTER TTY
ADAPTERBOSE

V 7 ALUMINUM
BODY

* COPPER
S 

LIE

8 9mmCOIA

I0

Fiue 1 ThCRL32AVhPrcsinSapdChre

LU625

~ X



(wxwrvwKKNpm jw7L

'I

'1"

'I4
I0
1cc

C4

00
V "4-H

626

00 . .0 I%



negot..ve t contact
runntung wove dLscontLnu ..tj

posLtLve

3 2 r-uflfLfl wove

41

Figure 3. Onie Dimensional Codunov Technique.

shock wove
ceLL n-1/2, m- 1/2

n

boundarj

-x

Figure 4. Hemisphere Shock Layer with a Typical Cell.

627



t= 0.0107 s 1.8

experimenital data
- code (real gas) 1.6

1.4>

/ / 1.2 C

0.8

0.6

0.4

0.2

1.6 1.4 1.2 1 0.8 0.6 0.4 0.z 0

Ax aL Postin, XI/R

Figure 5. Shock Wave Position on Hemisphere, Mach 4.0.

30

8 Z5- = 0.0107 s

200 experimental data
- code (reat gas)

15-

10

0
I0 20 30 10 50 60 70 80 90

Poston ,degrees

Figure 6. Wall Pressure Distribution on Hemisphere, Mach 4.0.

628

Fiue .W eo on Hmph , h .
• ;' ''-' . ,. "' , "', ' ',.'" NI . N % " %' " " k k " . ... ,%',%



8P

7-
t = 0.0107 s

.Q.. 6 - Beotsevlcovsk,
SGodunov

5- code (reaL gas)

4a

~3-

0 o 30 40 5 60 70 80 9

Position, degrees

Figure 7. Wall Mass Density Distribution on Hemisphere, Mach 4.0.

Pressure &n Rtmospheres

700 60

7 , -. 7 0/

. ,. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0. 0

Post.Lton Lonq the Body, x1O

Figure 8. Pressure Contour Plot in Annulus, Mach 4.0.

629

*. .. .. .. q , . , .



t =0.0006 S1.8

1.6

1.2

IC

/ 0.6

0.4

r 
1-0.2

1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0

Axial Postion, x,"R

* Figure 9. Shock Wave Position on Hemisphere, Mach 20.45.

600

500- t 0.0006 s

. 400-

00

300-

P 100

0 10 20 3 0 5 0 70 80 90

Positioni, degrees

Figure 10. Wall Pressure Distribution on Hemisphere, Mach 20.45.

630



SKEW GRIDS AND IRROTATIONAL FLOW

Robert S. Bernard
Hydraulics Laboratory

U.S. Army Engineer Waterways Experiment Station
P.O. Box 631, Vicksburg, MS 39180-0631

ABSTRACT. Finite-difference computation of incompressible flow through
regions of arbitrary shape often requires the implementation of boundary-

fitted coordinates for which the grid lines may be non-orthogonal (skew).
When the governing equations are expressed in terms of pressure and velocity,
conservation of mass is maintained by the gradient of the pressure. In
principle, the gradient is irrotational and should have no effect on the
existing circulation in the flow field; but if the grid lines are skew, the
discrete representation of the gradient can generate spurious vorticity near
the boundaries. In the present work this difficulty is eliminated for uniform
skew grids, and markedly reduced for non-uniform skew grids, by adopting a
discrete formulation of the pressure gradient that helps maintain irrotation-
ality near boundaries. The procedure is applicable for staggered grids with
either Poisson or Chorin equations for pressure.

I. INTRODUCTION. The role of the pressure for incompressible flow is

simply to constrain the velocity vector u such that

V • u -'0 (1)

which represents conservation of mass. Assuming that the velocity field
conserves mass at some time t , let u' be a velocity field that would
exist at time t' = t + dt in the absence of pressure. Then the
corresponding mass-conserving velocity field u can always be written as

-1
u = u' - p V (2)

where p is the density and the scalar potential 0 is related to the pressure

p by

= p dt (3)

Combining Equations I and 2, it follows that ' satisfies the Poisson equation,

V 2  = PV * u' (4)

As long as the primitive variables u and p are retained as the inknowns in

the governing equations of motion, then it is necessary to solve Eq:lation 4 in N
order to maintain the constraint given by Equation 1. Even if Chorin's method
of pseudo-compressibility [1] is used to add a time derivative of pressure to
Equation 1 , the end result is equivalent to having solved Equation 4 when the
flow reaches steady state.
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The purpose herein is not, however, to discuss the pros and cons of
pseudo-compressibility versus Poisson equations in the numerous existing
algorithms for solving the coupled momentum and continuity equations. It is, I
rather, to consider the proper formulation of discrete approximations for the
pressure gradient and its boundary conditions on non-orthogonal curvilinear
grids. Improper treatment of the gradient near computational boundaries can
add circulation to the flow, in which case the discrete representation of the
gradient is not irrotational as it should be. This sort of error does not
arise if the computational grid is orthogonal; but if the grid is non-
orthogonal, special treatment of the derivatives in the gradient is necessary
to avoid or minimize the creation of spurious vorticity. The objective of the
present work is to ascertain what that treatment might be for the case of
non-orthogonal, non-uniform, curvilinear finite-difference grids.

II. DISCRETE FORMULATION. Consider a two-dimensional staggered grid of
the Marker-and-Cell type [2], with the pressure (and the scalar potential)
computed at the cell centers, and the velocity components (u,v) at the
midpoints of the cell faces, as shown in Figures 1 and 2. Assuming a unit
density and a unit depth normal to the page, the mass-flux components through
the right (east) and upper (north) cell faces are denoted by U and V
respectively, and are related to the cartesian velocity components (u,v) by

U yu- x v (5)

V -xv -yu (6)

The curvilinear coordinates ( ,n) follow the grid lines shown in Figure 1, and
they are functions of the cartesian coordinates (x,y). Conservation of mass
for each grid cell demands that

U + V n - 0 (7)

Denoting non-conservative velocities and fluxes with a prime, we then have the
relations

u u' -x

v = v' - Cy (9)

Using the chain rule [3] to evaluate the x- and y-components of the gradient,
we find that

ox (y n-1 y _ y 0) (10)

1" (x{% - xn@) (11)

where J is the Jacobian of the coordinate transformation,

J x y - xny (12)
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Combining Equations 5 through 11, we obtain the discrete analog of Equation 4,

A - A + B - Bs = U'e - U' + V' - V9  (13)e w n s e w n s (3

The sub/superscripts (e, w, n, s) indicate quantities evaluated on the (east,
west, north, south) cell faces, as shown in Figure 2, and

A = - n (14)

B = B - (15)

J-1 x2 + y2 )  (16)
Cx ny

y = -1 (xx2 + yy) (18)

Note that the right-hand side of Equation 13 is simply the imbalance in mass
flux produced by the nonconservative fluxes (U',V'), while the left-hand side
is the sum of the flux corrections provided by the gradient of 0 . After
Equation 13 has been solved for @ , and the flux corrections computed
therefrom, the mass-conserving fluxes can be obtained from

U U' - A (19)

V = V' - B (20)

The particular form exhibited by Equation 13 facilitates the elimination of
superflous derivatives when one or more of the cell faces coincides with a
boundary where there is to be no adjustment to U' or V' . Such is the case
for solid boundaries and for open boundaries where the flux normal to the
boundary is known or specified. For example, if the east cell face coineides
with a boundary, then Ae = 0 and Equation 13 reduces to

-Aw + Bn - Bs  U - Uw + V; V; (21)

Likewise, if the north cell face coincides with a boundary, then = 0 , and
'N Equation 13 reduces to I P

*Ae - Aw - B-=U - U + VA - V; (22)

If the grid is orthogonal (Y = 0) there is no question as to how to proceed.
In the case of Equation 21, only q-derivatlves are needed on the north and
south faces, and these can be evaluated from information inside the field.
Similarly, for Equation 22, only a-derivatives are needed on the east and west
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faces. Assuming the grid has unit spacing (A = i= ) In the computational
(&,n) space [4], then

e = ee -
(23)

n
on = nn - (24)

The double subscripts (cc, ee, ww, nn, ss, ne, nw, se, sw) indicate quantities
at the centers of neighboring cells (central, east, west, etc.) as shown in

Figure 2.

If the grid is non-orthogonal (Y * 0) , then E-derivatives are needed on
the north and south faces, and n-derivatives are needed on east and west
faces. On cell faces not touching boundaries, we can approximate these with

n 1

& =1 (one -nw + ee - Oww) (25)

e I

on = (one Ose +  nn - 0ss )  (26)

But for cell faces with one end touching a boundary, there is an ambiguity:
Equations 25 and 26 require information across the boundary in cells lying
outside the flow field. The ambiguity arises because there are a number of
plausible ways to compute the needed information, but no indication a priori
as to which one is best. In order to examine the possibilities, let us focus
attention on a cell whose east face coincides with a boundary.

We must find an approximation for 0 on the north and south cell faces,
and we shall consider only three possibil~ties although there certainly exist
others. The first is simply to replace 0 on the north face by its value on
the northwest corner of the cell, using th difference expression,

n 1
C= 7 (Onn - Onw + 0cc - ww )  (27)

Equation 27 imposes a &-derivative using information in the flow field,
irrespective of what happens on the boundary. For reference we shall call
this the "field approximation". The second possibility is to calculate ¢ on
the north face by using the same condition that exists on the east fice.
Specifically, on the east face we have the boundary condition,

e . Y e (28)
e rn

Applying the same constraint on the north face, we obtain

n .Yn n (29)

and the discrete approximation for becomes

I.. Yn n
0 -n (nn - CC)  (30)

535

of
~I % %.ML %y~ A . S~~- p.~. .. ,.~



Equation 30 imposes a &-derivative using only the boundary constraint,
irrespective of what happens in the flow field. For reference we shall call
it the "boundary approximation". As the third alternative, we
approximate * by a simple average of Equations 27 and 30, which we shall call
the "mixed apbroximation",

n Yn 0 +
2a nn cc)  4 nn nw cc wwn

We now have three discrete alternatives for representing ambiguous
derivatives of 0 adjacent to boundaries. Equations 27, 30, and 31 pertain
to &-derivatives for north faces touching boundaries of constant . The same
principles apply for ambiguous derivatives on other faces touching (but not
coincident with) flow field boundaries.

III. TEST CASES AND RESULTS. In order to ascertain which of the three
alternatives is best for representing ambiguous derivatives of 0 , we need
test problems that show clearly the adverse affects of grid skewness.
Moreover, we should pay special attention to the possible creation of spurious
vorticity arising from improper representation of the gradient near
boundaries. Thus we propose two classes of tests:

1. Non-orthogonal grids with uniform spacing.

2. Non-orthogonal grids with non-uniform spacing.

The first category allows us to see the effects of skewness alone, while the
second adds the possible compounding of error due to non-uniformity.

In all cases the flow field in the physical space will be bounded above
and below by solid boundaries, while the left and right boundaries will be
open with uniform normal components of velocity: u = 1 . Inside the flow
field we impose the velocity condition: u' = 1 , v' -10 . We then solve
Equation 13 subject to the constraint that the flux normal t the boundaries
remain fixed and no vorticity be created in the flow field. The large
vertical velocity creates a proportionately large violation of continuity at
the upper and lower solid boundaries, which is to be eliminated by the
gradient of the scalar. potential. In all cases the physical boundaries are
chosen such that the resulting streamlines should be straight lines, and any
deviation therefrom indicates the presence of error.

Results from the first three test cases are presented in Figures 3 .
through 5, showing computed streamlines for the flow through parallelograms
Df increasing skewness. Even at 10 degrees, the boundary and mixed approxima-
tions exhibit an unacceptable amount of circulation, while the field
approximation produces straight lines for each case. The computed solut.ions
were all converged to a maximum residual of less than 0.001 in Equation 13,
with the residual E defined by

p
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Fizure 3. Grid and computed streamlines for uniform irrotational flow.
through 10-degree parallelogram.

637

11 ve Ir or

% leA %~V ~ ~ K N:. %:~



.4 - VW4 - - - 6 S~v

COMPUTATIONALFIL
CRIDAPP OX'IMATION

20.

%

638~

%- %

.*~~~~~~ ~ ~ ~ ~ .1. %- 1N . fN . . .

%U



FIELD
COMPUTATIONAL APPROXIMATION

GRID

X I X E D B 0 -D A R "'
APPROXINIATIOT\ APPROXI"MATION

SIQ

Figure 5. Grid and comp~uted streamlines for uniform irrotational flow~
through 40-degree parallelogram.
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Figure 6. Grid and computed streamlines for uniforn irrotational flow

through rectangular channel.4
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" Ili v (32)

The last test involves a grid with non-uniformity as well as skewness,
shown in Figure 6. In this case the flow field is rectangular in the physical

(x,y) space, but L-shaped in the computational ( ,n) space. No one would

actually use such a distorted grid for serious computation, but it serves our
needs in that it allows us to observe directly the grid-induced error in a

flow where we know the exact solution in advance (u = 1). Moreover, the large
continuity violation associated with the initial vertical velocity (v' = -10)
is intended to magnify the error. As in the examples for uniform grids, the p
field approximation generates far better results than the boundary and mixed

approximations, but there is still some distortion of the streamlines even

with the field approximation.

IV. CONCLUSION. Three alternatives have been proposed for representing W
ambiguous derivatives in the pressure gradient on non-orthogonal grid cells

adjacent to flow field boundaries. For the test cases presented herein, the

best results were obtained with the field approximation; that is, by replacing

the ambiguous derivative on a cell face by its value on the adjacent cell
corner lying in the field (rather than on the boundary). Using this approach,

the discrete pressure gradient remains irrotational for uniform skew grids,

creating no spurious vorticity whatsoever. The presence of non-uniformity and

skewness together, however, can generate grid-induced vorticity even with the

field approximation. Thus, while non-orthogonal staggered grids can indeed be

sed for computing incompressible flow, it is advisable to keep the grid as

smooth as possible in the presence of skewness.
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A RANDOMNESS PROPERTY OF m-SEQUENCES

Harold Fredricksen

Mathematics Department

Naval Postgraduate School

Monterey, CA 93940

and

Gary Krahn

Mathematics Department

United States Military Academy

West Point, NY 10996

ABSTRACT. Maximal length linear shift register sequences

(m-sequences) are used in a number of communications applications. Their

nearly ideal randomness properties are what make these sequences so

employable. In this note we discuss an additional randomness property that

m-sequences possess.

I. INTRODUCTION. Maximal length shift register sequences

(m-sequences) have been used in a myriad of applications for high-speed

communications. The nearly ideal randomness properties of m-sequences is

the primary reason for their extensive applicability. The balance and run

properties are intrinsic in other sequences such as full sequences of

length 2n [1]. However, it is the correlation property (or shift-and-add

property) which makes m-sequences useful for spread spectrum [2]-[3],

synchronization [4], range-radar [5], error correction [6]-[7], random

number generation [8] and other applications. For additional properties of

m-sequences, applications and methods for their generation, see [9]-[10].

In this note we discuss another randomness property which is also possessed
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by m-sequences. Actually this property is equivalent to the shift-and-add

property, though not obviously so.

2. A RANDOMNESS PROPERTY. Suppose a pair of distinct elements (A,B)

is drawn at random from the set T - ( 1,2,3 .... 2n-2 ) where A < B. We

seek the expected value of A and B.

The number of ways of selecting any pair of numbers, without replacement,

from a set of (2 n-2 ) elements is [(2n-2 )(2n-3 )/2 ] - C(2n-2,2) i.e. the

combination of 2 n-2 objects taken 2 at a time. If A is the smaller of the

two integers and is equal to i, then there are (211-2-i) possible choices

for the larger integer B. Since each pair (A,B) is equally likely to be

selected, the probability that A equals the integer i is given by

2n-2-i
Pr[A-i] -

[(2n'2)(2n3)/2]

The expected value of A is the weighted average of the possible values

that A can take on. The expected value of A is thus given by

2n-3

E[A] - i * Pr[A-i]
i-i

2n-3

- X i * (2n-2-i)/M
i-l

where M - [(2n-2)(2n-3)/2]

2 n-3

- I/M i * (2n-2-i)

i-l

2n-3 2n-3
- 1/M [(2n-2) X i Z i2

i-l i-I
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-l/M [(2n-.2)2 ( 2 n- 3 )/ 2

(2-2 - (2n+1-5 )/3

The probability that (B-j) is given by

Pr[B-J] - (J-1)/M

The expected value of B is then

E[B] I j *Pr[B-j]

J -2

2n- 2

E j *(j-l)/M
J -2

2n- 2
- l/M E j * (j-1)

J -2

- 1/H [(2n-2 )(2n-4 )(2n+1-3)/6

1 - (2n-2)(2n1l)/2 + 1]

- (2n-l)(2n+l-3)/[3 *( 2 n-~3 ))

- (2n-1)(2n+l.6)/[3 *( 2 n-. 3 ))

- 2 * 2-/3

Thus, E[BI 2 * E[A] - 2 * ( 2 n-l 1 )/ 3  when selecting a pair of

numbers (A,B), where (A < B), at random, without replacement, from the set

T (1 2 3 . .2--
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3. THE SHIFT-AND ADD PROPERTY. Let S be a sequence of period 2n-l

generated by a primitive polynomial over GF(2) of degree n. Si is the

sequence formed by cyclically shifting S by j bits to the left. By the

shift-and-add property of m-sequences the modulo 2 sum of S and Si

equals Sk (S g Sj - Sk) where the shift k < 2n-i is uniquely

determined by the shift J. Let ((Ji,ki)) be the set of all shift-and-add

pairs for a primitive polynomial f(x) of degree n over GF(2) where Ji < ki

< 2n-l. Let the set (ji) - J and the set (ki) - K. Note: it can be shown

that there are (2n-2)/2 distinct shift-and-add pairs for each primitive

polynomial of degree n over GF(2) and J and K partition the set
(1,2,3,.....2n-2).

Since f(x) generates the sequence

S - S(x) - (so) + (sl)x + (s2 )x
2 +

we see that f(x) S(x) - 0. That is f(x) annihilates S~x). Since

f(x) primitive, f(x) is the minimal generator of S(x). If S 0 sJ a sk -

S(x) + (xJ * S(x)) + (xk * S(x)) - 0, then (1 + xJ + xk) S(x) - 0 and

(1 +xJ + xk) also annihilates S(x). Therefore, f(x) divides every

trinomial defined by a shift-and-add pair. Because f(x) is an irreducible

polynomial,

f(x)X xt for any t. Since f(x)l(l + xj + xk) then

f(x)l(l + xJ + xk)(x-J) - (x'J + 1 + xk-J) and

f(x)I(l + xk-j + x2 -l-j). Therefore (k-j, 2n-l-j)is a shift-and-add
pair where (k-j) < (2n-l-j). Hence, (k-J) is an element of J and (2n-l-j)

is an element of K. As a result, the sets (ki-Ji) and (ji) are equal and

(ki Ji> - XJi
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from which it follows that

Xki - 2 ZJi.

This is equivalent to the expected statistical result determined above when

pairs of numbers are drawn at random without replacement, from the set

(1,2,3,... ,2n-2). Thus, sequences generated by a primitive polynomial have

the randomness property shown by randomly selecting pairs of numbers from a

finite set of size 2n-2.
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THERMODYNAMIC GAUGE THEORY OF SOLIDS AND
QUANTUM LIQUIDS WITH INTERNAL PHASE

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The local gauge invariance of relativistic thermodynamics
under phase rotations suggests that bulk matter systems have density and
temperature dependent internal phase angles associated with the state func-
tions. A procedure for determining the internal phase angles associated
with energy, pressure, entropy, thermodynamic potentials, and gauge para-
meters of solids and quantum liquids is presented in terms of the renormal-
ization group equations of relativistic thermodynamics. The calculated mag-
nitudes of the thermodynamic state functions depend on the values of the in-
ternal phase angles. It is suggested that the external angular momentum of
systems may be coupled to the angular momenta associated with the internal
space of thermodynamic phase angles. Applications to mechanical waves in
matter with internal phase are considered. These effects are expected to
be found in high density and pressure systems such as atomic nuclei, neutron
stars, nuclear explosions, and-the interaction of directed energy beams with
matter.

1. INTRODUCTION. The complete understanding of matter and radiation

at high densities requires a locally scale and gauge invariant theory of the
forces and fields that determine the properties of a physical system. 1,2 The
basic forces in a physical system are associated with a local gauge group, as
for example the gauge group of the standard model of the strong and electro-
weak interactions is SU(3)c x SU( 2 )L x U(1)y . For simple systems, such as
electromagnetism, the gauge group is U(1) the group of phase rotations. 3 Local
gauge symmetry has unified the interactions of nature, and it is only natural
because of such success to attempt a similar synthesis in other areas of phys-
ics such as thermodynamics and mechanics.

The vacuum state plays an important role in the development of local
gauge theories of the four fundamental interactions. It produces observable
effects in quantum electrodynamic calculations of the fermion self-energy,
vertex modification, and vacuum polarization as manifested in the Lamb shift. 4,

In quantum flavordynamics the nonzero expectation values of the vacuum Higgs
field produces the spontaneous symmetry breaking that gives rise to the mas-
sive intermediate vector bosons that mediate the weak interactions.' In quan-
tum chromodynamics the vacuum polarization leads to the concepts of a running
coupling constant and asymptotic freedom for the non-Abelian gauge theories.1

- 3

The question then arises as to whether vacuum effects appear in systems at the
macroscopic level, and whether a synthesis of thermodynamics and continuum
mechanics can be based on a locally gauge invariant theory that includes the
effects of the vacuum state.
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As part of a general program to determine the state equation of systems

at high densities, a local gauge theory of matter and radiation has been de-

veloped that is based on a gauge and scale invariant relativistic trace equa-

tion written to include vacuum effects as follows
6

dU - 3V d(PV)u = U)a + T(d-Ia (1)
dT PV dV PV dT JpaV

U+T~pv

where U = relativistic (renormalized) internal energy, P = relativistic pres-

sure, T = absolute temperature, V = volume of substance, and Ua and pa = cor-

responding nonrelativistic'internal energy and pressure. Throughout this paper

the index "a" will refer to nonrelativistic (unrenormalized) calculations. The

trace equation (1) can be rewritten as7,8

I(- b + T - bV )E -3 (1 + y + V -yT -L P (2)

(1= (lba + T b baV -

Equation (1) can also be written as

T aP a T a a p a
E + C - 3(P - KT ) + (T T- P)(3y -b) =E + C b T--P (3)

V V V V

where E = relativistic energy density = U/V , Ea = nonrelativistic energy
density, and where 7,8

CV aT

T(DP/DT)
v(p - KT)

ba T(?pa/1T)v

a V (6)
(p~a -_ )b=(Pa K, )

where y = GrUneisen parameter, Cv = relativistic heat capacity at constant
volume, and Ca - nonrelativistic heat capacity at constant volume, given
respectively by
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CV=(7)

a = aua (8)cv -

and where

= -V()T (9)
V Ta

- V (- (10)
3VT

are the relativistic and nonrelativistic values of the bulk modulus respect-
ively. The parameters b and y are the gauge parameters of relativistic ther-

modynamics. Equation (2) can be decoupled into two independent equations by

noting that E and P are related by the Gibbs-Helmholtz relation as follows9

-Lv~ = T(2 - P (

With the introduction of a Lagrange undetermined multiplier n , equation (11)
can be rewritten as

I+ V -) + n I- T -LP= 0 (12)

Using equation (12) allows equation (2) to be decoupled as follows
8

(T -L + fV -L + M)E = a (13)

T -y + hV - + N P = 0 (14)

where

f =r -b (15)

h n/3 y(16)
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M f +1 (17)

N =h - 1 (18)

= (T. - baV + - b)a (19)

Equation (13) and (14) are the ground state renormalization group equations of
relativistic thermodynamics.

For a solid or low temperature quantum system the nonrelativistic, scalar
state equation of the ground state is assumed to have the following form

6 S-

Ea = Ea + EaTj + ... (20)
o j

pa = pa + PaTJ + (21)
o j

where Ea and pa = nonrelativistic energy density and pressure respectively,

Ea and pa = nonrelativistic zero-temperature values of the energy density and
pressure respectively, Eq and P4 = nonrelativistic thermal coefficients for

J Jthe energy density and pressure respectively, T = absoLute temperature of the
system (*K), and j = numerical index having values characteristic of the type
of physical system. Note that Ua = VEa and Uia = VEa where Ua = zero-tempera-

0 0) 0
ture value of the unrenormalized internal energy.

A commonly used descriptor of the thermal state equations given by equa-
tions (20) and (21) is the nonrelativistic zero-temperature value of the GrUn-
eisen parameter that is defined by

6 -
8

a
a =1 1 a (22)
0 Ea (-I) Ea dV( j

except for j = i. Here ya , nonrelativistic zero-temperature value of the
GrUneisen parameter, and V - volume of the material system. When j = 1

= 2/3 . The zero temperature value of the nonrelativistic bulk modulus
0a = ndP/dn where n = N/V = number of moles per unit volume,
is given by Ko  ,0d.d
and N = number of moles of a substance.

The corresponding relativistic scalar state equation will be written
6-8 

4

as

E = E + E.TJ + "- (23)o 65



P = P + P.T j + (24)
0 3

P. 1 .d
YO = -1 = (yE.) (25)

E. (i-I) E. V 3J ii

a

except for j = I , when El 1  El , where E. and Po= relativistic zero-temper-
ature energy density and pressure respectively, Ej and Pi = relativistic thermal
coefficients for the energy density and pressure respectively, and (o = relativ-
istic zero-temperature GrOneisen parameter. The relativistic value-of the zero

temperature bulk modulus is given by Ko = ndPo/dn . Note that Uo = VEo , where
Uo = zero temperature value of the renormalized internal energy. Combining
equation (2) with the state equations (20) through (25) yields the following
ground state equations

6

E - 3[(1 + y )P -K o ] Ea (26)
0 0 0 0 0

j( j P y 
j a Pa

I+ j + 00 3v = E a( + j + 00 (27)
P 0 - K 3V / a - Ka

0 0

where the internal energy coeffidients are given by

E. F
_1 -I) f a- - Y) j (28)

and where Po, Ko and yo = zero temperature values of the relativistic pressure,
incompressibility ( -VdPo/dV) and Gruneisen parameter respectively, and pa, Ka

and ya are the corresponding nonrelativistic values of these quantities. Eqs.
(26) and (27) are a set of coupled nonlinear differential equations for Po and

Yo .Equation (26) is equivalent toG

d2 E dE
3n2  - 3( + Yo)n 0 + (3y + 4)E = (29)

dn2  o o o

The trace equation for radiation in matter can be derived by a perturbation

technique applied to equation (2) with the result7 '

I-Er - 3r(T L - P) (30)

3 3[(I + + V - T -.) P rS(T 9{-" P) a7
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where E and Pr = radiation energy density and pressure respectively, and
where 7  r

P K T -(P -K
r Tr 3-T r Tr(

Sr r P KT (P KT) (31)

a P
T--

b T ST (32)
r Pr - K~r

6r 3E/;T (Yr - Y )  (33)

JP / 1T

~r SE /9T
r

rWr (35)

r r T

The parameters yr and br are the two radiation gauge parameters of the thermal

medium.

Equation (30) can be separated into two radiation equations each of which

is similar in form to the Callan-Symanzik equation. This is done by using the
Gibbs-Helmholtz equation which for radiation becomes 9  V.

3U 3E (37)r = + V r = r P (37)
SV r DV DT r

Introducing a radiation Lagrange multiplier nr as follows

3 E 3P
FE + V r+ P - T r 0 (38)

rLr DV r 'rj 
Ole

allows equation (30) to be separated as follws-

E 54e
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M' x v r) r - r' f- P) = a (39)
(T + V + M )E (T P)(93T hrV W r) r hr r( r
a -+ - h6(T - P) =0 (40)

T x r V W r r r r 3T (0

where

f r n - b (41)
/r r

hr -- ( r/ - ) (42)

M =r f + (43)

N = h - 1 (44)r r

Local auge and scale invariance has unified continuum mechanics and therm-
modynamics. 8 In particular, it has been shown that local scale invariance for
thermodynamics requires the introduction of two gauge parameters b and y which
must be determined simultaneously with the energy density. It has been shown
that the Lie group e+O is the scale invariance group of relativistic thermo-
dynamics that is based on a trace equation.7  The group U(1) of phase rotations
e-i is the gauge invariance group of this theory.8

The invariance of the trace equation under scale transformations of the

form P P' = Pe-  and E - E' = Ee-+  ,and under phase rotations of the form
p,= @ - ± i - -iZ -- - W

, , ye± T' =Ee y' = ye , and b - b' = be leads to
the renormalization group equations of relativistic thermodynamics. 7 , Por
instance, gauge invariance for phase rotations yields the following renormal-
ization group equations for the complex gauge parameters

8

+ T a V J

3 - T (45)
(dP, P-T- TiPl-

+ T 3 bV
(db aT 9V (46)
\dE E 4 E iEV 3v

av D

4 where P and E are the magnitudes of the pressure and energy density respec-
tively. Symmetrization gives the following results for gauge invariance under
phase rotations 8
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dT ' ~ d- L L )) _T
d= 2j\dI + ) P p (p P 2 1 p2T 2 (47)

-P ( P-T- L T 2; + V 3+ 2

db + ddb1  
3 V+ b dW (E + V _VE)(T D b V

dE 2L dT \dE ij Ed (TE 2  2 (V )2 (

Similar equations result from the scale invariance condition which gives dy/dP
and db/dE for changes in the magnitudes of the pressure and energy density. 

7
,

These results suggest that the pressure, energy density and the gauge pa-
ramaters may themselves be intrinsically complex numbers that are associated
with internal phase angles. Accordingly the relativistic trace equation (I)
will be written as

a|
- (d \ -- ua I dUa

+VdU - 3V d(pV) a +T T (49)
' 'pv dT /0paV

Or equivalently as

(1-b + T+ - V ," + V - T (50)

where U, E, P, y, and b are complex number representations of the internal
energy, energy density, pressure, and the gauge parameters. The corresponding
equation for radiation in matter with internal phases is derived from equation
(50) to be

(T -- (51)

3T- DV -_
-+ V - ( T --- I- -

L\Y~vY T r \ Yr I] '

where Er, Pr, r, and 6r are the complex number generalizations of the func-
tions that appear in equations (30) through (36).

This paper presents a theory of the relativistic thermodynamics of solids
and quantum liquids with internal phase. The renormalization group equations
for systems with internal phase are derived, and a procedure for solving the
complex number relativistic trace equation is presented that allows the deter-
mination of the internal phase angles associated with the pressure, energy
density, and gauge parameters. The non-zero values of the phase angles rep-
resent a spontaneously broken symmetry.
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2. THERMODYNAMIC STATE FUNCTIONS FOR SYSTEMS WITH INTERNAL PHASE. In
order to solve the complex number trace equation (50) it is first necessary to
determine the relations between the complex thermodynamic state functions and
to determine their connection to the internal phase angles. This will be done
using the first and second laws of thermodynamics. The complex number thermo-
dynamic state functions that appear in equation:. (49) and (50) will be written
in terms of their internal phase angles as follows

U = Ue (52)

T = /V = Ee i u (53)

P = Pe i6P (54)

- = Ye (55)

b "bei8 b (56)

where e , 0 , eo, and b = internal phase angles of the internal energy, pres-
sure, Gr neisen parameter, and b gauge parameter respectively. In addition
the complex number entropy will be written as

S= Se (57)

where 6s = internal phase angle of the entropy. In general all of the phase
angles are functions of V and T. The quantities U, E, P, y, b, and S are the
magnitudes of the complex thermodynamic state functions, and are also functions
of V and T.

The complex number bulk modulus is obtained from equation (54) as follows

( ) K ei6K i p -P -Dop)
DV T eiIV '- + iPV- (58)

K (2V\ ) =KeT V 3V

Jo

- e '(n 2n + iPn j

where

K= + Pl - (59)
T ( ~ V / 2(

KT cos w = n 3P/3n (59A)

KT sin w = Pn Op /3n (59B)

pp

K p +W(60)
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an

tan w = P p (61)

Equation (52) immediately gives the complex number heat capacity as

V (ad Cve iOCv (2
= ) = (62)

where

311 2 au 2

V 3 2ae (63)

CV cos p = WU/3T (63A)

CV sin p = uae /3T (63B)V U

eCv =e u + p (64)

U u T u

tanp= UT DT (65)

T U DT

Thus the renormalized values of CV and KT include the effects of the internal
phase angles eu and ep respectively.

The relationships between the various state functions and their internal
phase angles are determined from the First and Second laws of thermodynamics
which can be written for matter and radiation with internal phase angles as
follows

TdS = Te ieS(dS + iSd8s) = dU + PdV (66)

or equivalently as

S =bU + (67)av av

T-a 3 (68)aT 3T

Combining equations (52), (53) and (57) with equations (67) and (68), and
separating into real and imaginary parts, yields the following equations
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T cos O -S S sin 6 -) = cos 0 + P cos e - U sin e -u. (69)

3V s D u N p u V

T~i 3 es I 3 3e

T(sin e cos 0 = sin 2 + P sin @ + U cos u (70)DV s JV u +p u -

T(coS'0s S - sine s = Cos e2U - U sin 0 u3u T u T (

T(sin es L + S cos 3 = sin e + U cos e 6 u (72)DT s T/ u d)T u (72

Squaring and adding equations (69) and (70) gives

T2[(LS2 + s 2(3 2 + P2+ U ( \o u + 2P -L cos (e - e) (73)

+ 2PU sin (o -

Squaring and adding equations (71) and (72) gives

2 rL 2 (, )] U 2 ( 66 2
T2 SL +2U2s2 ].2 '74)

3\Ti D T DJ\T) 3T )
The Gibbs-Helmholtz equation for matter with internal phase is written as

au = T P - T 
(75)V 3

Using the Gibbs-Helmholtz equation allows Equation (67) to be rewritten as9

S 3P76)3-V 3 -T (6

which allows equations (69) and (70) to be rewritten as

30 36

Cos e )--= S sin -COS D - - P sin 0 -- (77)s 3V s V pDT p ,T

sin e i + S cos 0 -- = sin e 6 + P cos 0 O (78)s 3V s _WV p Tr p YT
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Squaring and adding equations (77) and (78) gives

\a~ + s - -a ((L) + ) + ) __/ (79)3V _77T 3T

Also, from Maxwell's relationship it follows that3

T= (80)
sV

From which it follows that

38
T -= cos (0u - )- U u sin (e -0) (81)

s u u
TS U- - - 5S sin (e - + u cos (e - (82)

s ~- in( s) U-cs U S

and

2 2(2 36 U\
2 2 u 2

(8

T _T(L_)2 (83)

The Gibbs-Helmholtz equation (75) can be separated into real and imaginary

components as follows

30 p8e

cos 0u -u V = cp o 8 _T -P) - TP sin Gp 3T (84)
si V U sin p -T Cs T

i 7V -+1Cos sin 8 p T- P) + TPcos 0 (85)uosV uV p-v s T p 3T

Equations (84) and (85) can be rewritten in terms of the energy density as

follows

3e se (86)

cos 6 - sine V u + oseV I ps psn T P - cose T -L)P -(C u u avu 70p p 3T p 3

sin u + cos e v u + sin e )E + sin 0 - cos 8 T - - sine T -L)P = 0
-u u Vu p p T p 3T
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Squaring and adding equations (84) and (85) gives

2- + 2 T (88)

( aLT), + U~k 5  (T~P 2  P (T . (88

Combining equations (73) and (79) gives

T ) 2 U u + 2P 2 cos (6 (89)

+2PU- sin (0 - e )
3V p

Expanding the right hand side of equation (88) and using equation (89) gives
the following simple result

T - cos (e - ) + U ( sin (e - e) (90)
3 p u 3Vp u

Similarly

2(T ) 2 U)2 - U 2

P2(T = _L sin2 - u + U2 ) cus 2 (p - u) (91)

- 2U - -u cos (a - 0u) sin (0 - )
3V 3V p P u p u

The three basic thermodynamic potentials will now be considered.

The enthalpy of a substance with internal phase is written as

H = He i6H = U + PV (92)

where H = complex number enthalpy, H = enthalpy magnitude, and OH = internal
phase angle of the enthalpy. Combining equation (92) with equations (52) and

(53) gives

H2 . (U cos 0 + PV cos 0 )2 + (U sin 0 + PV sin e )2 (93)
u p u p

= U2 + p2V2 + 2UPV cos (eu - 0
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tan6 =U sin 6 + PV sin 0 p(4
H U Cos 8 + PV Cos 8

U P,

The differential of the vector enthalpy is

dH = ei8H(dH + iHd8 TdS + VdP (95)

which yields

CosB H - H sin 8 -H = T cos 8 - TS sin 8 -s PV sin 8 .E (96)HSH aS s sS asP s

3H 3eH ;e 38
sin 6, S+ H cos 8- = T sinOe + TS cos 8 sa + PV cos 8 -n (97)HS as s Sa p Ds

@H1 "H M8 8M
Cos e8 7 - Hsin 6Ha - Vcos e8 - TS'sjn8sa -- PV sin8 6 -@ (98)

sine3H ae-+H -=V sin.8 + TScos863 ~+ PV Cos8 a a (99)H P +1Hco 3OH' p s 3P p 3P

where S and P are taken to be the two independent variables. Combining equa-
tions (96) and (97) gives

2 ( J H 2 2 ( e)2 + 2 2 p2(1 0
'3S ) 3 + TS _- (10

+ 2PVT Psin (6 - a ) + 2TSPV --- cos (6 -3s s p Ds 3s s p

while combining equations (98) and (99) gives

( )2 -'H =2-1T22( - + PV2(90p) 2 (101)

De e 31'

+ 2TSV 3Psin (e0 - a S) + 2TSPV - . 3s. cos (8 - 8 1))

The complex free energy is written as
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= Aei0A = U- TS (102)

where A complex number free energy, A = magnitude of the free energy, and

eA = internal phase angle of the free energy. Combining equations (52) and
(57) with equation (102) yields

A2 = (u cos e - fs cos ) 2 + (U sin 6 - TS sin 6 )2 (103)
u . U - s

= U2 + T2S2 - 2UTS cos (a - Os)

U sin 0 - TS sin 6
tan eA = U cos u - TS cos 6 (104)

U s

The differential of the vector free energy in equation (102) is

dA = eiOA(dA + iAdOA) = - PdV - SdT 
(105)

from which it follows that

8A 3A_

cos 6 A- - A sin 6 7 - _ P cos 6 (106)

A OA

sin eA O + A cos 6 A  = _ P sin 6 (107)
A W A V p

cos 6 -- A sin A =  S cos e (108)
A ADT s

sin eA- + A cos e A  = S sin 6 (109)
A 3T A T s

and

2A) 22 2

V%)2 + A2(-j-) = p2 (111)
T 6V 36T
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The complex number form of the Gibbs-Helmholtz equation for the free energy
is written as 

9

A- *(DT (112)

which gives immediately

aA A
Cos 6(- T-LA)+A sine T- co e (113)

A 3TTAu

sin 6 A- T!-- A co~ T - U sin e (114)
A( TI cs;A )Tu

and

A 1- 2+ A2( ") 2(115)

Combining equations (103), (111) and (115) gives

A L-= S[TS - U cos (e - ) (116)

The complex number form of the Gibbs free energy is given by

=Ge iEG =U+ PV - TS = A + ByV (117)

where G complex number Gibbs free energy, G = magnitude of the Gibbs free
energy, and eG = internal phase angle of the Gibbs free energy. It follows
immediately from equation (117) that

*G cos eG = U cos 0 + PV cos 0 - TS cos 0 (118)
Gu p s

G sin 0. = U sin 0 + PV sin 0 - TS sin 8 (119)

which gives

G 2 U 2+P 2V 2+T 2S 2+ 2UPV cos (e -a -0u 2UTS cos (e - e ) (120)

-2PVTS cos (9 -

664

-6 "S--



"~ ~JW~WJWI~ 'UV VU1 ~T~T~7Ar~ ML

and

U sine+ +PV sin e - TS sin e
ta . Ucos eU + PVcos 8 d 5S o (121)

The differential of the vector Gibbs function in equation (117) is

dG = eiOG(dG + iGdO G) - SdT + VdP (122)

from which it follows that

Cos e6 - - G sin e G _ - s cos e - PV sin e6 D (123)

G G s p

sin 9 - + G cos 6G8 S sin 0 + PV cos 6(124)

Cos 6 3 - G sin 0 - G o PV. sin e6 (125)
G 3P G P = o p P 3P

sin e -+ G o = V sin e + PV cos 86 (126)
G 3P G P p p 3P

Combining equation (123) and (124) gives

( 2 2(3G G 2 30 2 2
-_L S + 2PVS sin (e - a ) - + P (127)
3T 3 \T /p s DT 3

while equations (125) and (126) give

2 (3')2 2 2; 2

+ i G C = 2 + P2V2U A (128)
DP DP

Further relationships can be obtained from the vector form of the Gibbs-
Helmholtz equation for the Gibbs function which is written as

A =C- PV G -P - (129)
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When the T = 0 limit exists (as in the case of solids and quantum liquids)
for matter with internal phase, the following equations corresponding to equa-

tions (52) through (57) can be written

0 U e (130)

E ly i0 (131)o o 0

P = Pe P (132)

Yo = yoe  (133)

= 0 (134)0

0 = 0 (135)0

where 00 , 0 0 , and 00 are the T = 0 values 6f u , e , and 0 respectively.
U p YU p Y

Note from the definition of b in equation (5) it follows that b = 0 so that
0

b = 0 also, however it will be shown later that 0b # 0 . From the Third law

of thermodynamics it follows that S = 0 and S = 0 .0 0

For solids and quantum liquids one can take the T = 0 limit of equations

(84) and (85) and get

dU dO0

0u 0
Cos d- - U - sin 0 = - P cos (136)

udV odV u o p

dU de0

sin 00 +U u cos 00= - P sin 00 (137)
udV odV u o p

From equations (136) and (137) one gets immediately

dU de 0

0sin o 0 + u 0o

tan- + Uod- cos 0 (138)
P dU do0 (138)

cos 0 - - U sin 0u dV o dV U
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2 2

o) e: dV + U2~-j (139)

dE do

n

Using the trigonometrical formula for the tangent of the sum of two angles
allows equation (138) to be rewritten as

00 =00 + (140)p u 0

where

dO dO0  dO°
U u u u
U V U En-

tan 0 
= - =V o dn o dn (141)dU o  dU o  dE 11

0 0 n-0 E
-- -E

dV dn dn o

P cos D = ndE /dn - E (141A)

P sin c = E nd 0 /dn (141B)O 0 0 u

From equation (141) it follows that

d6
0

o u
(D -- 0 when dn = 0 (142A)

dU
0 = + T when -= 0 (142B)

f dn

In general for a T = 0 system

dO 
0

p =eu +"tan 0 - -  
(143)

0n 0

Figure 1 shows the density dependence of 90 and 60 for an unbound interacting
system such as a neutron gas. The two possible signs that occur in equation

(142B) arise in systems having a saturation density at which dUo/dn =0 ,
according to the signs of dUo/dn and d6°/dn as dUo/dn - 0 as seen in Figure 2.
Figure 2 shows the density dependence of ( and 0° for a system such as N = Z
infinite nuclear matter which is bound at a 3aturation density. These figures

667

-N



show the effects of equations (140) through (143). In general 60 < 0u in

the high density limit of bound or unbound quantum systems. From equations
(58) and (59) it follows that

dP i(o° + w

=ndn Koe p + (144)
0 ( d o 0 2o d d

where

K 0 n + P

°  / n d- 
(145)

o 2(n dn o

tan w = P (d08p /dn)/(dP /dn) (146)

K cos w = ndP /dn (146A)
0 o

K sin w = P nde0 /dn (146B)
o 0 0 p

The complex number analogs of the scalar thermal state equations given

-in equations (23) and (24) are

.T j = E e + E.e i0 UTj =e (147)

oe ] o j

P = P + P.T P e + P e = Pe P (148)

0 J 0 I
where Ej and P. = magnitudes of the thermal components of the energy and
pressure respectively, and eJ and - = phase angles of the thermal components
of the energy density and pressu-:e r(pecti'elv. From equations , n7 % n

(148) it follows immediately thit

2 2
E = E + 2E E. cos (0 - .'r + E r.

0 0 j U U J

p2 = p 2 + 2P P. Cos (00 -J)T j  (150

p j p p 2

a 0

E sin 0 + E. sin ,. .F
tan 9 = 0 u (151)

u E cos 0 + E. cos T-j T%
0 U U U
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P sin e0 + P. sin 0
j Tj

tan e = 0 p j (152)
p cos 0+ P. cos GjTj

0 p j p

Note that Uo = 1E and U. = VE .

3. GAUGE PARAMETERS FOR SYSTEMS WITH INTERNAL PHASE. The two gauge
parameters that appear in the basic trace equation (50) are T and '5. The
complex number GrUneisen parameter is defined as

- V _P _aP/T ye ie (153)

TV 3T aE/--

where y and 6Y = magnitude and phase of the Grneisen parameter respectively.
Combining equations (53) and (54) with equation (153) gives

Dei( p - eu ) O T +  T

Y e paE ae(155)

2 + P -1(3 ei(p -O U + V P) (155)

( E )  e 2

where p and p are given by

De

tan P = ED (156)

,IT

De

tan DT (157)

)T

Comparing equations (153) and (155) gives

= - + P - P (158)
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+ 2 2 2

aP/aT cos p I_/( P/aT)2 + P2 ( 0 /3T) 2 -

Ppa osP "" (159)

DE/DT cos (aEI aT) 2 + E 2 ( aejaT) 2  (9

The T = 0 limit of equations (156) and (157) can be obtained by noting

that from equations (149) and (150) it follows that

(LE) = Cos 6os - e )TJ 1  (160)

lTa o = iP cos (Oj - 0)T -l (161)

and from equation (151) and (152) it follows that

E -- T- = jE. sin (6J - e0) TJ- (162)

P -Pj sin (eJ - 60) TJ- 1  (163)aTP P

It then follows from equations (156) and (157) and (160) through (163) that

Po = 6J - O (164)

u u

= pl - 0o (165)0 o P P _

and therefore from equation '(158) it follows that

0 0 = 6i- 63 
(166)no

Finally combining equation (159) with (160) through (163) gives

Yo E, (167) iYo p.

which is the same form as in equation (25) for the scalar thermal state equa-

tion. The results in equations (166) and (167) can be obtained directly from
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the T - 0 limit of equation (153) by using the complex number thermal state
equation (147) to get

P. P.
Yo = E=- e p (168)[J J

The gauge parameter b is defined as follows

- bei b (169)

where KI is defined in equation (58). Equation (169) can be rewritten as

3P D P __eE

T a + iPTT T T + iPT T-- D5 = -3T 3a(170)

P+V-+iPV --2 - P - n - iPn
3 V 3V an 3n

T LP 2T 
+ P T / 2 X

( 3( ei( +X) (171)

(P + 3 P1V + 2(V DV /

where p is given by equation (157) and X is given by

ae

tan X 1P (172)

Comparing equations (169) and (171) gives

eb  W +--X (173)

b= (TDP/3T) 2 + P2(TOp /.'T) 2 TaP/DT sec w1
b i 2= 2 PT nP/an sec x (174)

(P - n3P/an)2 + P 2(naep n)2 P n"P'3n sec X
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The T = 0 limit of equation (173) is

0 0 0 + X 0 J - + X° (175)
b p p

where

dO
0

p n --

0 o dn
tan X = dP (176)

P 0 dn

while the T = 0 limit of b is obtained from equation (174) to be b = 0.

In the past two sections the relationships between the various phase an-
gles and amplitudes of the thermodynamic state functions have been presented.
In the next section a method'of- calculating the phase angles and amplitudes
will be presented.

4. RENORMALIZATION GROUP EQUATIONS FOR THE GROUND STATE OF PHASE MATTER.
The phase angles and magnitudes of the complex number thermodynamic state func-
tions are calculated from the solution of the vector renormalization group equa-
tion (50). Combining equation (50) with equations (52) through (56) gives

(177)

be2b+ T be' E'u-3(1 +y Y+Voy T _L Pe i = a
(1 - b3 8 b+ T iv -3e

8 V)e e~+ V DT)jo

where

a 1 b a + T - baV _)E a  (178) 

3T av (78

Equation (177) can be separated into real and imaginary parts. The real part

is given by

cos e I - b cos 8+T- - b cos 0 V - b sin V"E-(179)
U(b 3T b 3Vb7U

-sin 0u - b sin 6b + T -T bsinb V-bcosb V E

3co 6~l ycs ,+ - cos 0. T-L + sin 0 T 30pP
b YT b 2V b

+ 3 sin 6p ¥ sin 9. + V W - y sin 01 T7 - y cos e - T P T
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The imaginary part of equation (177) is written as

sin OU - b cos eb + T - - b cos eb V + b sin 6b v -- iE (180)

aea 
e )+ cos eu - b sin 8 b + T DT - b sin e b V w- b cos eb  v 

np L - y cos B T + y sin T P
bav b ya)

-3 si 8~y sin e + V--  a in T-

Y ; +

Equations (179) and (180) can be further simplified by introducing equations
(86) and (87) and their two corresponding Lagrange indeterminate multipliers
n and T to get

as

oincosn uasineu V 9 d cos V ) E (181)

+( (cos +sinp T36 ep cosf TeqPi0

(sin e + cos eV - + sin e a (182)

+ rksin e - cos 0 8 3 - sin 6 T-2-

Combining equation (179) and (180) with the constraints in equations (181) and
(182) gives the following four independent partial differential equations

(ZT -L+ fV -L+ M)E = a (183)

(mT -L + qV - + R)P = 0 (184)

(- + xV - + ""' 0(153T 3V(15

s a a (1
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where

- Cos Ou (187)

f = cos 6( - b cos 6b) + b sin @ sin eb (188)

M cos u 1 + r - b cos eb + b sin ebV (189)

- sin eu I b sin b + T -- + - b cos b)v _TJ

m = sin e (190)

q = sin u(T - b cos e - b cos e sin eb  (191)

sin 6u 1 + T - b cos O b + b sin ebV -v (192)

+ Cos e[ b sin eb + T a + (T - b cos 6b)V a- J

w = cos - cos 6 + y sin 8 sin 8 (193)A Y) P Y

x = Cos e
p

Y = Cos p + y Cos e + y sin 3T (195)

p p
- sin p sin 6 + V 8+ 8Cos T T

[Y Y 3V +Y 0

s = sin ep(' - y Cos )s 0 sin e (196)

p Y(196)
z = sin e (197)

s - + y cos 6 + - sin e T ] (198)sin 6° P[ 3y3
+ cos p sin e + V 2 + y _ 6,) T 3e
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In the limit of e. 0 one has
1

M 0 w = - y s = 0 (199)

f =n-b q= 0 x =1 z= 0

M= I +n-b R=O Y= - +y 1=0

which agree with equations (13) through (18).

Equations (183) through (186) are the renormalization group equations that
describe relativistic thermodynamic systems having internal phase angles. There
are ten unknown quantities in equations (183) through (186): E , 6u , P , ep I y
0y , b , eb , n , T . The ten equations required to determine these quantities
are: the four renormalization group equations (183) through (186), the two equa-
tions (158) and (159) that define 7 , the two equations (173) and (174) that
define b , and the two constraint equations (181) and (182). Equations (183)
through (186) can be derived from a Lagrangian formalism in a manner similar
to that in the accompanying paper.

5. RENORMALIZATION GROUP EQUATIONS FOR RADIATION IN PHASE M-ATTER. In a
manner similar to equations (52) through (56) the state functions and gauge
parameters for radiation that appear in equation (51) are written as

S= U e u r  (200)

T r = Ur /V = E re iour (201)
r r

E= =ee ur(201)
r ri r

r pr(2)

= yrei~yr (203)

-- = b eiebr (204)br r

r = 6 eio6r (205)r r

r 8 e Br  (206)
r r

where 6ur internal phase angle of the radiation internal energy

Spr= internal phase angle of the radiation pressure

0 = internal phase angle of the radiation GrUneisen gauge parameter~yr
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ebr - internal phase angle of the radiation br gauge parameter
b r r internal phase angle of 6r gauge function

8er = internal phase angle of ar gauge function

In general all of the phase angles and magnitudes that appear in equations
(200) through (206) are functions of V and T. Also all of the equations that
appear in Sections 2. and 3. are also valid for radiation and can be carried
over into the present calculation by adding a subscript "r".

The complex number form of the functions that appear in equation (51) can
be written in a form analogous to that in equations (31) through (35) as follows

T -( i
T r - KTr T T r Tr 

(207)
r r T - KT KT)2

D T
T 3T (208)

P

Er/ aT

r E/@T (Yr -Y )  (209)

-r 3P r/1T (210)

Er E/3T

a 7 r

KT and (211)

Combining equations (210) and (201) through (203) gives

9 r) 2 + 2(22.. ) 2 3P ia' sec

r (T. r3T r r (212)
Yr /, - --Pr 2 3E /rD0u) = lT sec P r  [

(rE) + r r r (13

ayr e pr -e ur + ir -r (213)
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where

a0

tan Pr a (214)a r -- Pr

r

Er T

tan p r Eu (215)
r

3T

Combining equations (174), (204), and (208) gives

( T 3T. + 2Tr (26b= 3 +r DT /. T sec xr
r (a P2 2(2 3P sec X

m r + V 3) + P r V V r 9V

br l r + Xr 
(217)

where

P V r (2

tan Xr Pr 3V (218)

P +V P - r
r 3V r Dn

Combining equations (201), (53), (203) with (209) gives

6 T r 2 + y2  2yy cos - 0 ) (219)r 2 r yr y
(E2 2DeIu 2

ur - + 0 r + r (220)

where

" yr sin e - "y sin e

tan r -r " ( (221)r yr cos 8 - y Cos er yr y
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and where p is defined in equation (156). Combining equation (206) and (207)
gives

r Are r - Br eir (222)

where 5 r and er of equation (206) are given as

A2 + B2 _ 2A B cos(tr - r (223)

tan A r sin r - Br sinr (224)
ar A cos r - B cos 4

where

A r br ( 7T) r (V -)( V I 2 (225)
e + V + p2 V

B= T 2 + p2 (T ) ( r + V r) 2 + P2 V (2

B 3T= Tr VrV (226)

r ( +v ) 2 + p 2(V a

r e br + epr p - X + X e p e p + 1r + X (227)

~ 9 - e +~- + 2Y (22S)
r pr p r

Finally the radiation bulk modulus in equation (211) is given by

S eprfn -p + i p r~2  (229)
Tr 3n r)n /

= kTe ipr + -r)

where678
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tanw r n3nr (230)
r aP

n 3n

It remains to show how the radiation equation (51) can be decomposed in-

to four radiation equations which combined with the defining relations in equa-

tions (200) through (228) can be used to calculate the eight quantities Er ,

eur ' Pr ' 
0pr ' Yr ' O'fr P br , and Obr . First note that equation (51) can

be rewritten as

(i - beieb + T - - bei 6bV )E eiour - reiOBr[ T (Peiap)- Pe' P (231)

-31(1 + ye iy + V e yeY T DPe i 0 pr e6 ie rT (peip) - Pe i ' 1I a

The simplification of equation (231) can be realized bv noting that the complex

Gibbs-Helmholtz equation for radiation

r = r - (232)

yields the following two constraint equations similar to equations (181) and

(182)

36

n r(Cos 6 - sin 6 V -- + cos 0V )E (233)

+ nr(Cos 6 + sin 6 T Pr - cos 6 T-)P =0
pr pr T pr Yr r

36
T(sin ur + cos 6 V- + sin ev.a)E (234)

( ur ur 3Vur r

+ T sin c - Cos 6 T r sin 6pT- P =0
r pr pr )T pr 3T/ r

where two radiation Lagrange indeterminate multipliers, ',r and Tr ' are intro-

duced. Separating equation (231) into real and imaginary parts and using the

constraint equations (233) and (234) yields the following four independent

partial differential equations

%%
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{£TJ-+£V47 + M)E     ~gj  cos(0„     +  e     + X)   = ^"^ 
^   r     3T r     3V r     r r 3r p r 

(235) 

(mT7|r+qV^+R)E -pj sin(0„ +0  + A) = 0 
r  ST  ^r 3V   r' r   r    ' 3r   p 

(236) 

(w T ~ + X V — + Y )P - 5 J cos(e„ + e + X) = 0 
^ r  3T   r  3V   r' r   r      6r   p 

(237) 

(sT^+zV^+l)p -6J sin{0^ +6 + A) = 0 ^ r  3T   r 3V "  r r   r      6r   p 
(238) 

where &^' , 9g^ , 5^ , and 6^^^, are given by equations (223), (224), (219), and 
(220), and where 

PT 
tan A = 

9e 
 F 
3T 

T^- P 
3T 

(239) 

J = V (T 
3T P)' + P'1T^ (239A) 

and where 

I    = cos e 
r      ur 

f  = cos 0  (n  - b cos 6, ) + b sin 6   sin 9, 
r      ur r        b ur     b 

(240) 

(241) 

M = cos G  i 1 + n  - b cos 0, + b sin 6, V ,„ 
r       ur \     r b b  dV 

ur (242) 

sin 6 
3 6 30 

- b sin G^ + T-^+ (n^ - b cos 9jV — 

m = sm H r       ur 

q  = sin 0  (T  - b cos 6, ) - b cos 6   sin 6. ^r       ur r b' ur     b 

(243) 

(244) 
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Rr sin 0 + Tr - b cos b + b sin 6 b u) (245)

+ cos 0 - b sin 'b + T + (T - b cos e )V -r

urrb 'T r b I

w= cos p - y cos B + y sin e sin 6 (246)
pry pr y

x = cos 6 (247)
r pr

Y = Cos epr - + 5 cos y + y sin 9yT T (248)

r pr 3~ \ 2.
-sin a y sin 6 + V 36p + (r e) er- pr~jS~6 ¥ -- - cos @5 T ST J

sr pr - cos sin- re cos p sin e (249)

z = sin 6 (250)
r pr

I= sin 6pr 1 - + ' cos ey + y sin eTT (251)

a6 p+(Tr 3T 1r
+ cos pr sin @ + V 3 3 a T3r -- 5 cos 6/ @

Equations (235) through (238) are the renormalization group equations for radi-
ation with internal phase angles. Setting 8i = 0 in equations (240) through
(251) reduces equations (235) through (251) to equations (39) through (44).
The radiation renormalization group equations (235) through (238) can easily
be derived from a Lagrangian formalism in a manner similar to that given in the
accompanying paper.

6. GROUND STATE OF SOLIDS AND LOW TEMPERATURE QUANTUM LIQUIDS WITH IN-
TERNAL PHASE. This section considers the calculation of the energy density,
pressure, and internal phase angles associated with the relativistic state equ-
tion of the form given in equations ([47) and ([48). The complex number analu'-
of equations (26) through (28) are written as

- 3[(1 + -o - K] = Ea 252)
0 0 0
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-- . a aX ~ ~ NU WW W.f

/ Pdyo /E<oJSo 1~o=/ EaI + Yo 0 0
a

T 1 j j + 3n dn E + j + a a (253)

.exp .-e a (254)
E a. ~ 0 0~~ n E0  e
j .1

where

dP .0 dP d0

K 0 n edn 0 + iP n R / (255)

= i (60 +  0o)

0

where PO , KO , and w are given by equations (139), (145), and (146) respec-
tively. Equation (252) can also be written as

d2-°  dE =E

3n2 - 3(1 + )n -E-*- (3o + 4)9 - Ea (256)

dn2  0 dn 0 0 0

Equations (252) and (253) and the constraint equations (136) and (137)
must be solved for Eo , eu , P0  , , Yo , and eo . Combining equation (256)
with equations (131) and (132) and taking the real and imaginary parts yields

the following two equations

F1 cos e0 + 3G sin e = Ea  (257)
U 1 U 0

F sine 0 - 3G cos 0 = 0 (258)

1 u I u

where

2  E dE
F = 3n2  - 3(1 + y cos 80 )n - (259)

dn2  0 y dn

64 + s o0 (deo\2
3ycos + sin 8 O

+ 4 3 y ° ~ o Y i n y n d n- 3 d n o
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dO 0  dE

08 d2 0

dU0 2 a 00
+ I + Cos e)n *Uj - n2dn2 - ysin 0E
1+y co 2 an3

Equation (253) can be written as the following two equations

UI Lcos e6j(l + j + A + C) - sin 6jB+ 1 + + 0a -K a 21
00

sin ejl+ j + A + C) + cos 6j(B + D) =0 (262)
U U

where

A= jy P cos(00 + x0 (23

A ~ =2( 0 263

B = 00 y '(264)

dP

0do 
de 0d

C3(cos n d- - si eo ) (265)

/s dY deo

D t~in e yn dn + Cos n80 (266)

where

de 
0

tan = 0 d (267)

o 0 ndn
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61 = -(j - 1)fy sin e ° dn (268)u y n

a lQ - 1)Yf - Y cos E) (269)

J

The angle 0J enters the calculations through the relation (254)
U

U. U. re ie0 dm1
-1 -a e U = exp (j _ I)f(ya _ ye Y (270)

U. U.
JJ

from which equations (268) and (269) follow immediately. Equivalently one can
use

- -1
Yoy 0ye Y Q-)Ud (271)

1( dU. dOj

= j dV dV /

to obtain

2___ d0J VP.

I2 V - (272)

V d V
tan °  

(273)

U. dV

oa

Note that U1 ; U1  when j 1. From equation (271) it follows that

dO j  dO1

y sin 0o =0 L - U I (274)0 J-I dV j-1 dn
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dU. dU.
Y cos 0 1 1Vn f l(275)
0 y j-1 U. dV j-1 U. dn

which immediately give equations (268) and (269) respectively. From equation
(271) it also follows immediately that

a = - 0j  (276)
Y p u

2 2 .2~

d U (277)
j V (j-1) dV -

Note that when j = I : U l = 3/2 NR = Ua , and P= y3/2 nR . The simultaneous

solution of equations (257), (258), (261), and (262) along with the constraint
equations (136) and (137) give Eo , o, Po , °  o , and e? . Then equations
(272) and (273) give Uj and ea ; Pi is obtained from equation (277), and finally
0q is obtained from equation (276). In this way all of the elements of the re-
normalized state equations (147) and (148) can be determined.

7. EXCITED STATES OF SOLIDS AND LOW TEMPERATURE QUANTUM LIQUIDS WITH IN-
TERNAL PHASE. The complex number state equations for the excited states of sol-
ids and low temperature quantum liquids are written in analogy to the ground
state equations (147) and (148) as follows

__ 0 i0iu Tju
E = + . Tj  = E eo ur + E. e urTj = ei ur (278)r or jr or jr r

P P + P. Tj =P eiPr+P.eiOprTj  P eiOPr (279)

r or jr or jr r

where the T = 0 equivalents of the quantities in equations (200) through (206)
are

0

U o UeoreOur (280)

ie 
0

E =o o /V = e o ur (281)or or or

o P ep r  (282)
or or

ior yor e iyr (283)
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b - 0 (284)or

or =o eie r (285)

or - 0 (286)
oo0r

where e ' epr eyr 0and e r are the T = 0 values of eur , pr eyr and

r e pective y . and her er and Q a
66r respectively;.and where pJr and eir are the phase angles associated with
the thermal components of the radiation energy and pressure respectively.

The T - 0 and Tj components of the complex number equation (51) are re-

spectively
8

T - 3[(1 + y )P - - 3 P (Y - Y )= E a  (287)
or 0 or or E. o or o or

J- K  - + ) + j Ea(,aKa - Bapa + ETa (288)

Jor or jr jr j or or). jrjr

where

dE .o/ dE d

Tor _-E eiurn or E r
or dn or an or iE or(n

= P ei(9ur +
or

where

dUor 2 or (

Por / (o + Uor rV- (290)

dE d 00 \

or 2 ( n r
en o- oor dn/

0 _o + opr ur r (291)

CosD= ndE - E (291A)

or r oror
P sin o E ndeo /dn (291B)or r or ur
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where

0  0de°  de°

U u r E n u r
tan o - or dV E or dn

r dU dE (292)
dV n dn or

The T = 0 radiation bulk modulus is given by

dP o / dP d6

K or dn=or e iPr n dnor + iP orn .pr (293)

ei(eo r + wr)

or

where

Ko= \dnoP 2 ( deo )
0r dn or n dn p (294)

K cosw 0 = ndP /dn (294A)
or r or

K sin wr = P  nde0 /dn (294B)or r or pr

tan w = P (de /dn)/(dP /dn) (295)
or pr or

The functions S--r and Ta that appear in equation (288) are given by8
jr jr

S. = + j+ PYr + 3n d y -r 3(j - l)( - ) (296)

JrPO - K dn or O

a a
a J~o~or

T. = I + j + (297)
Sr p a -K a

0 0

and where

a a
0 P0 a y0p0a T o (298) 'i

(P 2 pa - Ka) 2  (28

0 0 0 0
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-- a a

2 ~ o a20 (299)

(P ) 2
=(pa -Ka)

2
0 00 0

En analogy with equations (271) through (275) one has the following
relations

P. __ dU. 08~
1 v r= Yore ie(300)

or E. (j -1) TUj dV o

Jr + iru

(j-1) \ U. dV dV,

~or =(j-1) )2__ (v (01

de
v ur

tan eo dV (302)
yr dU i

U jrdV

0 1 urj
Yo sin 6y s-V dV (303)

Yo Cos e0  1 V- U (304)

8 0 6- e ei (305)
yr pr ur

Y U. dU.or r 2 (2dL (06

j r V j-1 d V / rU \dV

When j -1: E r Ear and P1 y foEi Integration of (303) and (304) yields
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(j - 1)fy sin e o °  
(307)ur or yr n

a exp (j - )(Yor-Yr Cos 00 ) d] (308)

Ea ~ ~ ~ o eXLJ~or csyrTJ
jr

Using equations (130) through (133) and (280) through (283) in equation

(287) and separating into real and imaginary parts yields the following two

radiation renormalization group equations

F cos 0u + 3G sin 00 - 3 Jr P(A cos FJr - B sin j r  a (309)
1r co r 1 r E. o or or or or or

E.
F sin 0u - 3G cos 0 3 1 .L Po(A sin r' + B r cos r 0 (310)
1r ur Ir ur t or or or or)

where

d2E dE

F 3n2  or 3 (1 + y cos 0o) n or (311)
Ir dn 2  0 Y dn

0 s in 8 0 n ]
+[4 + 3yo(cos + Ysn 0 -- --- 3 dn or

i0o unor
1r o S - 2n d dn (312)

de0 d 2a 0]

os 00) ur n 2 ur s e
0 y dn dn2  or

A = oy coso - Cose 0  (313)
or or yr o Y

B = y sin 0 0 - y sin 8 0 (314)or or yr o s Y

r = j r + 0 06890 (315)
or ur p u
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In order to decouple the complex number equation (288) into two real

equations one must first rewrite the expressions for a , B , and Jr -From

equation (298) it follows that

Y -- oP .0 i(2Xo + a 0 P 90

a , T2 et  8 - (316)

0

where yo , Po , and Xo are given by equations (272), (139), and (267) respec-

tively, and To is given by

T2 (Po n d- o 2n 2 (317)

From equation (299) it follows that

--e Y (318)

T
2

0

where Koand w 0 are given by equations (145) and (146) respectively. The ex-

pression Sjr is obtained from equations (296), (132), (133), (144), and (283)
to be

Sj R jr iTjr (319)

where

jP yo [j1  dP 0 0deo 0  0
R r 1 + J + 2 P - n d cos a - P n d sin y(320)

0

+3n -o 0 Iy n sin ) 0
dn yr or dn (r

1)y2 0 a + 2Pa

do o yr s arpirn

3(j o )' rp r cos (20° .)r -y 0" Yor Cos (P + ) + 0 cos (2.)
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JPo or[ dP0 dO0
T. = o sin 0° + 1 n  cos 00 (321)
jr T2 dn / yr 0 dn Y

0

dy dO 0

3 n or sn0 +y 0n ~o+ (3 - sin + nosyr + or n  yr

(3(j - 2 (2e0 2 Y sin (e0 + 00 + Y0 sin1( ) [yr sin sin2Y~rin8r

or 'yr 0oor 'y yr o Y

Using equations (289) through (321) allows the second radiation equation (288)
to be separated into real and imaginary parts as follows

J (L cos Qj  - M sin QJ ) + E (R cos 6j  - T sin j .) (322)2  or or or jr jr ur jr ur

0

-jE(,a Ka _ apa + Ea Ta

j- or or jr jr

(L sin Qj + M cos QJ ) + E. (R sin ej  + T. cos ej ) = 0 (323)
T2  or or or jr jr ur jr ur

0

where

o
L =PK cos w - K P cos 0, (324)or o or r o or o

0M = P K sin w - K P sin 0 (325)
or o or r o or o

j  =6 0 + 0 j +2X + 60 - 0 °  (326)
or pr u 0 y p

Equations (309), (310), (322), and (323) are the four renormalization group

equations needed to solve for the four unknown radiation functions Eor P o

Yor and eor . The radiation analogs of equations (136) and (137) relate

ur , rt or I and Por Equations (307) and (308) relate jr to or
These eight equations can be used to solve for the eight quantities Eor

Por jr , and Pjr (or Yor)"

8. PROCESSES IN PHASE MATTER AND RADIATIO. The internal phase angles of
matter and radiation allow an extended interpretation of the types of processes

that can occur in these systems. Consider for example the change in complex

entropy given by equation (57) as

dS = e's(dS + iSdO ) (327)

691



From equation (327) it is clear that dS = 0 cannot represent a physical pro-
cess, as the real and imaginary parts both set equal to zero would determine
two V = V(T) curves, and these conditions would perhaps hold jointly only at
an intersection point. In fact two distinct processes can be obtained from
equation (327)

dS = 0 adiabatic process (328)

dO s 0 entropy isophase process (329)

Thus an adiabatic process corresponds to a rotation of the entropy vectorS
in internal phase angle space. Processes may occur in nature such that changes
in volume and temperature cause rotation of the entropy and internal energy
vectors. For the case of constant entropy magnitude (dS = 0) the heat incre-
ment is obtained from equation (327) to be

dQ = iTSdO (330)
s

For this adiabatic process the conservation of energy is written as

iTSde = dU + PdV (331)

This results in equations (69) through (91) with DS/DV = 0 and ;S/ T = 0

For the case of constant magnitude of the internal energy, dU = 0 and the
rotation of the internal energy vector is given by

dU = iUd8 (332)U

and equation (66) gives

TdS = iUde + PdV (333)U

This results in equations (69) through (91) with 3U/3V = 0 and 3U/ T = 0 .
For the case when both dS = 0 and dU = 0 , corresponding to rotations of both

the entropy and internal energy vectors, one has

iTSde = i-UdO + PdV (334)
s u

This results in equations (69) through (91) with DU/V = 0 , 3U/DT = 0
3S/3V - 0 , and 3S/3T = 0 . Similar results apply for the thermodynamic poten-

tials H , , and U

In general a process will result in a combined stretch and rotation of the
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thermodynamic functions U , P , S , H , A , and G , and the time rate of change
of a thermodynamic quantity will include an angular velocity of the internal
phase angles. For example, the rate of pressure change is given by

T ei P i dt d(335)

Thus, even if the magnitude of the pressure were held fixed. the pressure vector

can rotate internally.

Another possibility is the transfer of external angular momentum to inter-
nal angular momentum and vice versa. Thus external rotation may in some cases
be coupled to the rotation of the internal phase angles. In fact, the Lagran-
gian of a rotating body may be of the form

L = 2 + W I , + aei w. V(6e,ei) (336)
2 e e 2 i i e i )

e 1 l

where Ie and we = external moment of inertia and angular velocity respectively,
I and w e  internal moments of inertia and angular velocity respectively, andIi ande and internal mmnso nri andaulrvoitrepcvlyan
where ee and i = external and internal.angles respectively. The ei consists
of ep, , e s , etc, and 6i includes 6p , 6u , 5s and so on. The internal

moments of inertia Ip .Iu , Is , etc are associated with the internal angle

coordinates of pressure, internal energy, entropy, atc. It is expected that
for such a system macroscopic energy transfers would occur between the internal
and external dynamical systems. Such transfers may account for the glitches

that appear in the spin-down of pulsars. Similar processes have been suggested

to occur at the level of fundamental particles. -

9. CONCLUSION. The local gauge invariance of relativistic thermodynamics
suggests the possibility that the thermodynamic state functions can be represent-

ed as complex numbers whose imaginary parts are related to phase angles in an
internal space associated with all interacting systems of matter and-radiation.
Due to vacuum interactions, bulk matter solids and quantum liquids are coherent

in internal space. The phase angles and magnitudes of the thermodynamic state
functions are calculated from a solution of the renormalization group equations
which represent the mathematical description of the interaction of matter and
radiation in matter with the vacuum state. The internal phase angles are ex-
pected to manifest themselves in the state equations of matter and radiation in
matter. In some cases a transfer of energy may occur between external rotations
and the rotations of the internal phase angles. The internal phase angles are
expected to affect the equations of motion of classical and quantum systems, and
should affect the equilibrium configurations of atomic nuclei and the stars.

The renormalized ground state of a relativistic thermodynamic solid or

quantum liquid is associated with a broken symmetry manifested by the nonzero

values of the internal phases 6p , 6u , etc. that are obtained as solutions
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to the relativistic trace equation. A symmetrical ground state would have
ep = 0 , eu = 0 , as = 0 , etc. This broken symmetry should be associated with
massive gauge bosons that are connected with the excited states of the internal
phases of bulk matter, i.e., internal spin waves of the pressure and entropy.
Similar broken symmetries are common in atomic and nuclear systems. 1 As a
practical application of these ideas one can conceive of a bulk matter vacuum-
induced broken symmetry thermodynamic engine. Such an internal phase engine
would utilize the broken symmetry nature of the ground state of bulk matter in
a manner analogous to the broken symmetry ferromagnetic state of an iron arma-
ture in an electric motor.
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LAGRANGIAN FORMULATION OF RELATIVISTIC THERMODYNAMICS

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. Matter and radiation Lagrangians are developed from which the
renormalization group equations of locally gauge invariant relativistic ther-
modynamics can be obtained by the Euler-Lagrange equations. The Noether cur-
rent tensor and conservation equations of relativistic thermodynamics can be
derived from these Lagrangians. These Lagrangians exhibit a minimum value
when expressed in terms of the fractal dimension of a physical system, and
are locally symmetric about this minimum value. This suggests that all matter
and radiation in matter is fractal in nature. Gases, liquids, solids, quantum
liquids, and the mechanical waves that propagate in these systems, have fractal
properties. Equations for calculating the fractal dimensions of matter and ra-
diation in matter are presented, and general expressions for the void ratio of
gases, condensed matter, and radiation are derived. These results will have
applications to matter and radiation at high densities such as occur in neutron
stars, nuclear explosions, and the interaction of directed energy beams with
matter.

1. INTRODUCTION. Lagrangian formulations of the theory of continuous
systems are common in the classical mechanics of particles and fields. 1,2 But
it is in the quantum theory of fields that the Lagrangian formalisms have ex-
hibited their unique power to describe new 3hysical effects in addition to
yielding the dynamical equations of motion. -  For instance, the properties
of a chiral Lagrangian yield the left-right asymmetries of the electroweak
force. 6,7 The spontaneously broken symmetry of a Lagrangian gives rise to such
diverse phenomena as mass generation of gauge bosons, the existance of Goldstone
bosons, the ferromagnetic ground state, the Meissner effect for superconductors,
and many other subtle effects.6'7  These results suggest that other locally
gauge invariant systems, such as relativistic thermodynamics, may have a simple
Lagrangian description.

A set of relativistic thermodynamic renormalization group equations for
the ground and excited states of matter and radiation has been derived using
the local scale (gauge) invariance of relativistic thermodynamics. ' These
renormalization group equations are partial differential equations for the en-
ergy and gauge parameters, and are similar in form to the Callan-Svmanzik equa-
tions of relativistic quantum field theory. These equations are derived from
a relativistic trace equation that accounts for the vacuum interactions of mat-
ter and radiation in a four-dimensional formalism. 10 The trace equation is lo-
cally gauge invariant under the U(1) group in the sense that the values of the
gauge transformation functions depend on the local density and temperature of

a system.
9
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This paper develops a Lagrangian formulation of relativistic thermody-
namics that is shown to be equivalent to the renormalization group equations.
The Lagrangian density can be used to determine the fractal dimension (Haus-
dorf number) of bulk matter and radiation in bulk matter. Fractal matter sys-
tems are discussed extensively in the literature. 11 -

17 For relativistic ther-
modynamics, the fractal dimension is related to the state equation of a system
and its deviation from the homogeneous case is due to the vacuum interactions
of matter and radiation. In this paper the Gibbs-Helmholtz equation is used
to estimate the void ratios of fractal matter and radiation.

2. RENORMALIZATION GROUP EQUATIONS FOR A FRACTAL GROUND STATE. The lo-
cally gauge invariant interaction of the vacuum state with uniform bulk matter
and radiation is described by a relativistic trace equation.'0  The question
arises, however, whether the vacuum interaction will produce a uniform system
of matter and radiation or whether it will result in a fractal state. This
question can be answered by developing the renormalization group equations for
the fractal states of matter and radiation. The fractal analog of the relativ-
istic trace equation is written as

10

U + - DV -- (PV) U= d+T-- ()SdT dV dT paV

where D = fractal dimension = Hausdorf number. 11-17 The vacuum state (space-
time) has D = 3 to a very high degree of accuracy. 1 8 On the other hand, matter
and radiation in matter need not have D = 3 , and in general the fractal dimen-
sion of a system will depend on volume and temperature, D = D(V,T). In equation
(1), U = relativistic internal energy, P = relativistic pressure, T = absolute
temperature, V = volume of substance, and Ua and pa = corresponding nonrelativ-
istic internal energy and pressure. Throughout this paper the index "a" will
refer to nonrelativistic calculations.

For a fractal system with Hausdorf number D, equation (1) becomes
9

I - b + T - bV E - D 1 + y + V - YT P (2)

(t - ba + T- - baV V

where E = relativistic energy density = U/V , Ea nonrelativistic energy den-
sity, and where

9

3)V -

CV 3TV

T( P/ 2T)v
b= (P KT) (
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ai
a T(.)Pa/T) V
b= a (5)

(P - K )

where y = relativistic Grneisen parameter; C = relativistic heat capacity
at constant volume, and C = nonrelativistic heat capacity at constant volume,
given respectively by

V= (@)(6)

a (IUa (7)V \ T V

and where

KT = -V 3V (8)

a (F
KT = -V 'a (9)

are the relativistic and nonrelativistic values of the bulk modulus respect-
ively. The parameters b and y are the gauge parameters of relativistic thermo-
dynamics.

Equation (2) can be rewritten as the following two renormalization group
equations

9

(T.- + fV -L + M)E = a (10)

(T -L + hV + N)P = 0 (1i) 2
ST V'

where

f b (12)

h n/D - y (13)

M= f + 1 (14)
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N =h - 1 (15)

a T bV -L + I - ba)E (16)

and where n = Lagrange multiplier given by
9

V -P yT 2 + (y + I)P3= 3p|7
DP - T-(

DT

Equations (10) through (17) reduce to equation (25) through (32) of Reference 9
for the case D = 3 . Thus f , h , M , and N for the fractal ground state are
now explicit functions of the fractal dimension D, and therefore E , P , and Y
are also explicit functions of D. Finally, it will be assumed that f # 0 and
h # 0 so that equations (10) and (11) can be rewritten as

V 2-E + - T 2E + ME = a/f (18)
3V f 3T f

3P 1 %P N
V = + T IP + N P 0 (19)

3V h 9T h

For a solid or low temperature quantum system the nonrelativistic state
equation of the ground state is assumed to have the following form'

°

Ea = Ea + EaTJ + ... (20)o j •0
pa = pa + paTj + ... (21)

o j

where Ea and Pa = nonrelativistic energy density and pressure respectively,
Ea and 0 = nonrelativistic zero-temperature values of the energy density and
pressure respectively, Eq and Pa = nonrelativistic thermal coefficients for

J 3the energy density and pressure respectively, T = absolute temperature of the
system (OK), and j = numerical index having values characteristic of the type
of physical system. A commonly used descriptor of the thermal state equations
given by equations (20) and (21) is the nonrelativistic zero-temperature value
of the GrUneisen parameter that is defined by

P.
- -I = -- (VEa (22)

0 Ea (j-1) Ea dV (
3 j
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a
except for j 1. When j -I y = 2/3 . The zero temperature value of the
nonrelativistic bulk modulus is given by Kg = ndPa/dn , where n = N/V = number
of moles per unit volume, and N = number of moles of a substance.

The corresponding relativistic state equations will be written as
1 0

E = E + E.Tj + ''' (23)o 

P = P + P.Tj + .-- (24)o j

P., =__,j = 1 1 d (5
Yo 1E (j-1) E. dV (VE.) (25)

J J

except for j = I, when E1 = E , and where Eo and Po = relativistic zero-
temperature energy density and pressure respectively, Ej and Pj = relativis-
tic thermal coefficients for the energy density and pressure respectively,
and yo = relativistic zero-temperature Grineisen parameter. The relativistic
value of the zero temperature bulk modulus is given by Ko = ndPo/dn .

Combining equation (2) with the state equations (20) through (25) yields
the following ground state equations for fractal solids and low temperature
quantum systemsi

0

E - D[(I + Yo)P - Ko] = Ea (26)
0 00 0 0

j y Pd y 
ay a

E. + j + 0 0 + D° n "Yo) = a( I + j + pa (27)
P-K + dn + a)

0 0

where Do = Do(n) is the T = 0 value of the fractal dimension, and where
1 0

E. n
-(= ) -Y y) -] (28)-1 exp[-(j - (Yo-Y dn (8

Ea o 0 n

Note that in the derivation of equation (27) it is assumed that any explicit
temperature dependence of D in the for D = Do + D TJ + -. can be neglected
and that essentially D = 0 . If this is not assumed, an additional term
-D [(1 + yo)P0 - K0 ] has to be inserted into the left hand side of equation
(24).

Equation (26) can be rewritten as follows
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2 d2 E dE=
Do n - D ( + Yo)n d + [Do(1 + yo) + I E (29)

Equivalent forms of equation (29) are

2 dP dP (dy ) a
D 0n d n2 °  Do0 + Yo0) n da Do d P 0 P 0 (30)
o dn2  o n LoY n-- 1 +o+

; d2p

DoV2 d2 0+ Do(3 + y ) v d + Do(Yo + V dV-i+ D + I P = Pa (31)
o dV 2  0 0)V- L dV 0 o Jo 0

a aa a

Thus in general E = Eo(a a YO DO , V) and yo = yo(Ea a 0 Do 0 V) It
is possible that originally the unrenormalized state is fractal in nature so
that Ea - Ea(D a , V) and ya = ya(Da , V) If in equation (29) one takes

1o, nG and Eo n ° , where co = adiabatic index, and yo = constant, one gets

Ea
E - (32)

o G(Do)

where

G(Do) = D 2 D a (2 + yo) + D ( + 7o) + 1 (33)

0 0 0 0 0 0 0 0

It then follows that

p a Ka
P 0 K = 0 (34)

o G(D) o G(D)
0 0

A general expression for the void ratio in a fractal ground state can be
obtained from the Gibbs-Helmholtz equation

i -

E+v = T - - P (35)

which can be rewritten as

dV T- - (36)
V T-)P- P- E

702

.e ~ ~ ~ ~ ~ ~ ~ %~~ r V'.r.-W rW. % .7I.

~IL'~.~h% %~,'%t %



Equation (36) will be written in finite difference form corresponding to a
change of fractal dimension from the uniform D = 3 case to the general case of
arbitrary fractal dimension as follows

AV E(D) - E(3)-- (37)
S'IP(3) + E(3) - T 3P(3)

3T

where the notation, E(D) = energy density associated with a fractal dimension
D, and E(3) and P(3) = energy density and pressure respectively for the homo-
geneous case of D = 3 , is introduced for calculating void ratios. The T = 0
limit of equation (37) is given by

(AV) E (D) -E (3) E (D) -E 0(3)

0 Po(3) + E (3) dE 0 (3)
n,

dn

Note that the energy density for a fractal ground state is greater than that
of the homogeneous.state.19

3. RENORMALIZATION GROUP EQUATIONS FOR FRACTAL RADIATION IN FRACTAL
MATTER. The renormalization group equation for fractal radiation in fractal
matter can be written as a simple extension of the corresponding equation for
homogeneous matter, using the same notation as in equation (70) of Reference 9,
as follows

I T - (T- - P (39)
3T bT V)J ( 3T )

- D I + y + V.- - yT -Lr - T -
P

+ d 1, + ¥ + V -- T P

1) ba a~ a _a( a)
-+)V.- b r - f T - a

where the fractal dimension of the radiation in matter is Dr = D - dr ,and
where dr > 0 is the incremental change in the fractal dimension due to the
presence of radiation in the system, and where 9

P ~- -T T )
r Tr - (Pr - KTr)

r b b - KT  (P - K(T)
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r 
r         Tr 

Tr 

3P 

T3P /3T 
(41) 

(42) 

3E /BT 

^ = 3E73T~ ^^r - "^^ <" 

3P /3T 

r 

The functions YJ- and b are the radiation gauge parameters, and IC = radiation 
bulk modulus.  Note'that gj, , 6^. , and d^. are generally small quantities, while 
Yj. , 'bj. , and Dj. refer to the radiation itself and are not small quantities. 
For D = 3 and d^, = 0 , equation (39) reduces to equation (70) of Reference 9. 

Equation (39) can be decoupled into two independent radiation renormaliza- 
tion group equations as follows 

f^ = \ - b (47) 

\  = (n^/D - Y)~^ (48) 

M^ = f^ + 1 (49) 

\ = h^ - 1 (50) 
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where nr = Lagrange multiplier. For the case D = 3 and dr = 0 , equations

(45) through (51) reduce to equations (74) through (80) of Reference 9. It

will be assumed that fr # 0 and hr 1 0 so that equations (45) and (46) can

be written as

3E T E M 
a/V --- r (r-- P) = + E/f (52)

9V f DT f r f DTr r
r r r

3Pr T DPr N D
V +- - + -- E P -6 (T- P (53)

3V h 3T h r r T
r r

-- + Y + v P = 0

The energy density and pressure for radiation in solids and quantum liquids

is written as

E a=Ea + Ea Tj +... (54)
r or jr

pa = ea + Pa Tj + (55)

r or jr

and

E r=E +E . Tj +. (56)
r or jr i

P r P + P. Tj + (57)
r or jr

where

Ea and Pa = nonrelativistic zero-temperature radiation energy

or or density and pressure respectively -

a a
E and P = nonrelativistic thermal coefficients for the
jr jr radiation energy density and pressure respectively

E and P = relativisric zero-tmperAture radiation enery
or or dens ity. and pressore re-pectiivel %

E. and P. = relativistic thernial coefricients for the radiition

jr jr energy density and pressure respectively
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The zero temperature value of the radiation GrUneisen parameter is obtained

from equations (44) and (54) through (57) to be

a
P . P.

a =jr jr
¥or E a or EJr(

jr r

The zero temperature values of the nonrelativistic and relativistic radiation
bulk modulus is written as Ka = ndPa /dn and K = ndP /dn respectively.

or or or or

When radiation is present in a fractal solid or low temperature quantum
liquid, the T = 0 fractal dimension of the radiation will be written as
Dor = Do - dor where dor > 0 is the small change in fractal dimension associated
with the addition of radiation to the material system. The excitation equations
for such a system are obtained from equations (45) and (46) and are an extension
of equations (104) and (105) of Reference 9. They are written as

(59)
E.

E (-D Pi + Yo)P - Ko] - D Jr P (Y - y) + d [(1 + )P - Ko] = Eo
or o or E. o or o or o o o or

d-y
jE.(aK - 61or) + E. S. - d E.n -o =jEa(aaKa - B apa + Ea T a  (60)

j or or jr jr or 3 dn j or or jr jr

where

S. I + j + + D n o ) 2 - - 2 (61)jr P - K o dn 0- D (-)or o0 0

Tar= +J+J a a a a
T a I + j + jP Y a/(P - K ) (62)
jr o or 0 0

a yPo/(P - Ko ) 
2  = apa/(pa - Ka)2 (63)

00o 0 0

,a aa/(a

K /(P - K ) = /(P - K a (64)
0 0 0 0 0 0 0 0

In the derivation of equation (60) it is assumed that one can neglect a temper-
ature dependence of Dr of the form Dr = Dor + DjrTJ + ... (or equivalently,

dr= D - Dr = Do - Dor + (D. - Dr)TJ + .... d + dj TJ + ..-) and that
j i r'j or j r

D = 0 ,Djr = 0 and d. = 0 - If this is not the case and D. # 0 , then an
St do) 1o K0 ] has to be inserted into the left hand side

of equation (60). For this case both dor and djr must be determined. Equation

(59) can be rewritten as
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2 d2E dE
D or n D (1 + 0) n o11r + [Do(1 + y) + I]Eor (65)

dn -

E. a

+ D "= P (y - Y ) + d [i + y -)P Ko] = Ea
0 oE. o o or or 0a or

3

Equations (59) through (65) reduce to equations (104) through (113) of Reference
9 for the case Do = 3 and dor - 0. The values of dor and djr can be obtained

from an appropriate Lagrangian formalism.

From the Gibbs-Helmholtz equation for a radiation system

3E DP

E + V 3V T r - P (66)r V3T r

one obtains the following estimate for the void ratio of a fractal mechanical

radiation system in matter

E r(D,d r E r(3,0) ( 7

V ~3P r(3,0)
Pr( 3,0) + E r(3,O) - T -3

w here the notation Er(D.dr) = fractal radiation energy density, and Er(3,0) and

Pr(3,0) = homogeneous radiation energy density and pressure respectively, will be

introduced for calculating the void ratios of the fractal radiation field. The

T = 0 limit of equation (67) is given by

E or(Dd )r E or(3,0)
kAV) r o r or(68)

- or P or (3,0) + E or(3,0) V,

Specific examples of the use of these equations for radiation in gases and con-

densed matter are given in Sections 7 and 8.

4. GROUND STATE LAGRANGIAN. Lagrangian formulations of nonlocal gauge

field theories have been used to describe the four basic interactions that occur

in nature. 6'7 One is tempted to write a similar Lagrangian formulation of the

effects of the vacuum state on bulk matter. This section develops a Lagrangian

description of a nonlocal gauge theory of relativistic thermodynamics. Let the

Lagrangian function of a relativistic thermodynamic system be written as

L = ff(_- ,__y- ,p,v,t)dv (69)

and the thermodynamic action I be written as

I = fc(. , - ,p,v,t)dvdt fldt (69A)
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where C = Lagrangian density, = )(v,t) is an appropriately selected field,
and where

v -- en V (70)

t = e T (71)

The introduction of the variables in equations (70) and (71) is made because
it simplifies the ground state renormalization group equations (18) and (19)
which now become

3E + a -E + M. E a (72)

aP I aP N
v t7 +  =0 (73)

The Euler-Lagrange field equations-derived from 61 = 0 are-,'

d/ d / ---- \ = (74)dt ,t dv ,v

where the following notation was introduced

30 (75)a,t -t ,v 3v

The Lagrangian density £( ,t , O,v ,,v,t) and the field (v,t) are se-
lected in an appropriate way for relativistic thermodynamics so that the Euler-
Lagrange equations (74) will reproduce the ground state renormalization group
equations (72) and (73). In order to reproduce equation (72) one takes 6 =

where

-E-v = = (V,T,D) (76)

The corresponding Lagrangian density is

A2 +I + B + I Cc- (77)2 2 ,v t

where

A = I + Z (78)

Z = f dv (79)
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1= I dt (80)

Z ) + Z- z(E + E ) + (81)

B ( ,v ,v ,v

C=M
f (82)

where ,v = Ev is treated as a parameter dependent of v and t but independent

of or £,t In order to see that equation (72) can be derived from C,
and equation (74) it is noted that

I I E -dt (83)
t

d- - E (84)
dtd. f f 't

*' - - 4  + Z+\L-' (85)
,V

dA + C(: + E) (86)dv\--- =I v+p. E *
TV V If

?£1P

2 = B + C (87)

Placing these quantities in equation (74) yields equation (72).

In a similar fashion, in order to reproduce equation (73) one takes ¢ = -

= Pdv = JP V= r(V,T,D) (88)V

The corresponding Lagrangian density is

2 = 
F 2  

+ J + G + 2-
2 2 I I ( 9) ,

where

F= 1 +X (90)

IJ

x f- dv (91)
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J = f ' '- dt (92)

G=X( + C,) = X(P + P, ) (93)ivX( ,v vv

H = N 
(4

h (94)

where C,vv = P,v is treated as a parameter dependent on v and t but independent

of C ' C'v or C,t The following relationships hold

C2 J f dt (95)

h Dt
,t

d al-£2 I 3 P
t , ht (96)

it)

3C2 F, + X =FP + X (97)

i vv

3£
d 'L2

j 7 FP + H(r,+ p)-+XP *(98)

2 G + H (99)

Placing equations (95) through (99) into equation (74) shows that £2 is a
proper Lagrangian density for the pressure renormalization group equation (73).

It should be pointed out that the Lagrangian densities Ci and £2 have a
proper T = 0 limit and are given by

C2 + B + 2- (100)
1 2 o'o,v o2o _ oo

o F + G + -H (101)
2 Fo ,v -- 2 '0

where

5o fE dv o fPodv (102)

and where
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A = 1 + Z (103)

Zo = f M dv = fCodv (104)

0

Ea
Bo = Ao(E +E O +f (105)oo , o ( Iv5f

0

M0
CO W f (106)

0

F°  I + X (107)o o

N
X = f h- dv = Hdv (108)

0

Go =X0(P + P ov) (109)

N
H =
H 0 (110)

0

where fo , ho , MO and No are defined in Reference 9. Equations (100) and
(101) yield the following T - 0 ground state equations

dE M Ea
0 00d + -2 E -f (111)

dv f 0 f
0 0

dP N
d+- P = 0 (112)
dv h o

- 0

The two potential functions associated with Ci and 12 are obtained from
equations (77) and (89) to be

~I C,2

V I = B-- + 2  (113)
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1 2
V2 = Gt;+2 H 2  

(114)

If B < 0 , G < 0 and C > 0 , H > 0 the potentials have a minimum at certain
values of and which are determined from

-- 1 0 'V2 0 
(115)

where E and are varied by changing the fractal dimension D for fixed V and T.
The conditions in equation (115) are equivalent to

B + C M =0 (116)

G + H M = 0 (117)

or

M [ Z (E + Ev) + Ia/f] (118)

G X
S G (P + ) (119)

where &M(V,T) and CM(V,T) = values of & and z for which V1 and V2 are respective-
ly minimum. Taking the derivatives of equations (118) and (119) with respect to
v yields respectively

C ' C ) C a /a/

ZE + Z + C - z E + 2C - Z '__)E -' (120)
,V +,+cc v CC f fl

H H
XP, + X + H - X -i-P + 2H - X 'V = 0 (121)

Either equation (120) or (121) can be solved for D = DM(V,T) that makes the
potential V1 and V2 have minimum values. About the minimum, the potentials
have the form

i 2
VI )- I M 1=  C(_ )2 (122)

V - V2(¢) = H(Ac) (123)
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where Ck - + A and =M + A Thus the potentials are locally symmetric
about he minimum points. The value of D at the minimum points will be desig-
nated as DM(V,T) , and in general DM < 3 so that matter will have voids and is
fractal in nature for specified values of V and T. The fractal ground state of
matter occurs only for limited regions of V and T corresponding to the condi-
tions B < 0 , G < 0 and C > 0 , H > 0

It should be pointed out that the Lagrangians £I and £2 are not unique in
the sense that the following two Lagrangians also yield the desired renormal-
ization group equations

&2 + I(Ct ,v + Zvv + a/f) (124)

1 2 (125)
F ,v + J  

+( C  
+ ,)

These Lagrangians are linear in C and respectively and do not contain quadrat-
is potential terms as in the cases of equations (77) and (89). The quadratic
Lagrangians are chosen instead of the linear potential Lagrangians because they
are symmetrical about their minimum values.

5. EXCITED STATE LAGRANGIAN. The radiation renormalization group equations
(45)' and (46) can also be obtained from a Lagrangian formulation. The Lagrangian
density that gives equation (45) is

I - 2 + + B + i C2
Ir 2 r r,v r r,t r r 2 rr

where

r= f E dv = fEr dV = VTDD 17

r d Ir(VT D Dr) (127)

and

A = I + Z (128)r r

M
Zr = f f dv (129)

r

I = r dt (130)
r ~'f 3t

r
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B z(r + C ) + (T a- P) + (131)
r r r,v r,vv

r r

M
Cr  fr (132)

r

where Cr,w =fr v is treated as parameter which is dependent on v and t but is

independent of r ' 4 r v or 4r,t " To show that the Euler-Lagrange equation

(74) yields equation (45) when Cr it is noted that

d ID1r I I r (133)

r,t fr t

I1r
=A + rZ =A E + z (134)

Ar r,v rr rr rrr,v

d ir -E E E (135)

r,v rrv + Cr( r r) + Zr r

3:Ir

- = Br + Cr4r  (136)
r

Combining equations (133) through (136) with equation (74) yields equation (45).

The Lagrangian density that yields equation (46) is found by choosing

=r in equation (74) with I = C2r where

F 2 + 1 + + 2 (137)
2r 2 r ,v rr,t r r 2 r

where

r = fpPdv = r(VTrDdr) (138)

and

F = t + X (139) I
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N
X f S j-~ dv = fHrdv (140)Xr r- 10

r

r f d t (141)

r

C X(r~ + (T iP r ( y VT )p (12
r r(r,v + r,vv) r - - P) +- + Y + V - P (142)

N
Hr = hr (143)

r

If r,vv is taken to .be a parameter only dependent on v and t, one has

d '.rC I apr (144)
-i-t r,t) hr at

2r
-FP + X (145)

3r,v

d 2r F P + H ( r + Pr) + X P (146)dvar,v) r r,v r r r

r£2r

- + H C(147)

r r r
r

which combine with equation (74) to give equation (46). It should be noted
that the Lagrangians CIr and 12r have natural extensions to the case T = 0

In a form similar to that in equations (113) and (114), the potentials
associated with radiation in matter are given by

V B + I C 2(148)
Ir r'r 2 r'r

V G +I H 2(
2r r r 2r r 1 4 9)
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If Br < 0 ,r < O , and Cr " O , fir ,0 tlhuse potentials will have minimum
values at specific values of "r and Cr given by

I3V r
= B r + C = : 0 (150)

Dr r r rM
r

- = G + Hr = M  0 (151)

r

where &rM(V,T,D) and CrM(VT,D) = values of Cr and ;r for which VIj and V2r
are respectively minimum, and where the variation of r and Cr in equations
(150) and (151) corresponds to a change in dr for fixed values of V, T, and D.
The value of the fractal dimension of radiation in fractal matter is Dr = D - dr
generally, where dr > 0 so that in general there will be voids in a mechanical
radiation field. If the value dr = drM(V,T,D) minimizes the potentials Vlr and
V2r , then the fractal dimension of mechanical radiation in fractal matter is
DrM = DM - drM , and the fractal dimension of radiation in homogeneous matter is
DrM = 3 - drM . Mechanical radiation in matter is fractal in nature, and this
includes waves in gases, liquids, and solids for limited regions of temperature
and density where Br < 0 , Gr< 0 and Cr > 0 , Hr > 0 . Note that in general
DM .< 3 so that DrM 3 . Finally, when Vir and V2r have minimum values they can
be expanded about these minimum values by writing r rM + r and

Cr = CrM + A/r as follows

Vrr - V1r(rM) = Cr(A$r )  (152)

1 2
Vr( r - V~r M = I Hr(ACr )  (153)

2r r 2r rM 2r r

Electromagnetic radiation in matter will be treated in another paper.

6. THERMODYNAMIC NOETHER CURRENT TENSOR. Because the renormalization
group equations can be derived from a variational principle, there exists a
formal procedure for determining the conservation laws as a result of the form
invariance of the Lagrangian density under continuous transformations. This
procedure is given by Noether's theorem.' If the coordinates of a field
(x,) undergo a continuous translation of the form

x X = X + "x (154)

then the Noether tensor

OW ,V (155)
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satisfies the conservation law

ax 0 (156)

W

In this paper it will be assumed that the thermodynamic Lagrangian densities
are form invariant under continuous changes of volume and temperature"of the
form

t - t = t + At (157)

V-* V' = V + Av (158)

This is true for the Lagrangian densities of relativistic thermodynamics because
they are ultimately expressed in terms of the energy density and pressure, and
these quantities are form invariant under continuous changes of volume and tem-
perature.

The Noether current tensor for the energy density of the ground state of
a thermodynamic system is given by

(E = a C (159)
vv - v

,V

tt = 1 (160)

t t

tp

E __ (161)
vt t t

E _ _ , (162) JI
t v " , t_

pV

which satisfy the following conservation equations

Otv + vv 0(13

3t v (13

E E
vt tt

+V 3 0
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The components of the Noether tensor for the ground state energy density are
obtained from equations (159) through (162) by using the expression for [I
given in equation (77) as follows

= I A 2  - - ..(B - Zi - 2 (165)
vv 2 v , t v 2 (65

tD = - AC 2 I C 2 (166)t 2 iv 2

S = It (167)
Vt iv

t Ev (AC + Z) (168)tv ,t ,v

The Noether tensor for the ground state pressure of a thermodynamic system
is written as

-P - 2 (169)

DP 2 - £2 (170)

tt 3 ,t
,t

v - -2 (171)

,t

3£2
P= 2 (172)

tv ,t 4.,

which satisfy the following conservation equations

P P
tv + vv = 0 (173)

at

P P
vt + _t = 0 (174)

3v
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where

IP 1 2 1J - (G - X2
vv ,v , ,v= -IC - ) -- HH 2  (175)

t 2 -
H 2 (176)

cP = JC (177)
vt V

I t (FC v + Xt) (178)

The solution of the conservation equations (163), (164), (173), and (174) yields

the conserved quantities of the ground state of renormalized relativistic thermo-

dynamics.

The Noether tensor for the radiation energy density in a thermodynamic sys-
tem is given by

Er= 3 r r,v E -1r (179)

v DEr,v rv I

E -= 1r - £1 (180)
tt 3 r,t Ir

cEr DC I£r rv(181)
vt Dr,t

r, t

Er 3£ Ir= -- :(182)
tv E r r,t

r ,v

which satisfy

Er Er
tv vv--t+ 3 = 0 (183)

Er ,,Er

vt t
-- + tt = (184)v
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where

(Er 1 2 1 2 (
vv 2 r v -rr,t r r -r r,v 2 r r (185)

Er 1 22

Er (187)vt r r,v

(Er (A C + z ) (188)
tv r,t r r,v r r

The Noether tensor for the radiation pressure in a thermodynamic system
is given by

(PPr 312r -c(189)
v r,v r,v 2r

Pr 2r
tt C r,t 2r(10

rt

(DPr ~2r (191)
v r,t rv

~Pr 3C2r
Dtv rv 'r~t(192)

while the conservation equations are

Pr Pr

v+ -vv= 0 (193)

PrD Pr
Vt + = (194)

where
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yr 1 1 2 (195)
vv 2 r'rv r rt 'r r r'r,v r r

Pr 1 2 1 2tt -Frr,v - Hrr 7N~ (196)
t t 2 r r rr 2 r r

oPr J J (197)
Vt rrv

Pr 
9

tv r,t (Fr Cr,v 
+  Xr~r (198)

The simultaneous solution of equations (183), (184), (193), and (194) yield the

conserved quantities for radiation in matter.

7. VOID RATIOS FOR THE REAL GASES. In order to use the expression for the

ground state void ratio given in equation (37) it is necessary to calculate the

energy density and pressure of real gases for both the fractal and homogeneous

cases. For the homogeneous case with D = 3, the renormalized pressure and ener-
gy density are given by 10,21

P(3) = nRT[1 + nBa + n 2C(3) + .. ] (199)

3 : Ba 1n2T __3) .. ]_2

E(3) nRT[--- nT T - (200)
2 3T 2T

where
1 0

C(3) = Ca - 3 (Ba)
2 n a (201)

where Ba and Ca = unrenormalized second and third virial coefficients respec-

tively, and C(3) = renormalized third virial coefficient for the uniform D = 3

real gas, and where pa [not to be confused with equation (16)] is a function of

the second virial coefficient given by'
0 '2 1

S a T Ba(T) /3 (202)

T R Ba(TR)

where TR = species dependent relativity temperature of real gases. 10  The cor-
responding state equations for a fractal real gas are written as

P(D) = nRT[1 + nC(D) + .. (203)
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'[3 -nT 3B a  
C( ) . .](2 4

(D) = nRT[- - T n2 T D (204)

where

C(D) = Ca - D(Ba) 2 Zn ,a (205)

In order to obtain equation (205) it is necessary to assume that D is indepen-
dent of T and n.

Combining equations (199), (200), (203), and (204) with equation (37) gives

AV 1 2 7-V n2T a [C(3) - C(D)] (206)
V 3 T

where the following approximation was used in equation (37)

3P(3) 3
E(3) + P(3) - T PT 7 nRT (207)

Combining equations (201), (205), and (206) gives

AV n(2 - D)T [(Ba) 2  a] + (208)
T - (3 ( n(28

2
n (3 - D)T .' [C(3) - Ca] + .

Note that in general

C(3) - C(D) = - (3 - D)[C(3) - Ca] (209)

Thus voids will exist in the ground state of real gases only in the temperature
intervals for which AV/V > 0 in equation (208). This condiLion gives

' [(B a) 2 Zn a] < 0 (210)

T

or equivalently

[C(3) - 0 (211)

as shown in Figure 1. From Figure I it is clear that the largest size voids
will occur at low temperatures. There is also a narrow fractal region just
above the Boyle temperature, and a broad fractal region at high temperatures.
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Ultimately, the voids that occur in real gases are due to the interaction of
these gases with the vacuum state, which manifests itself in the third and
higher virial coefficients. The ideal gas is not fractal.

Consider now mechanical radiation in a real gas. For the homogeneous
case with D = 3 and dr = 0 the renormalized radiation pressure and energy
density are

2 1

(3, 0) =nRT kA + nB + n2C (3,0) + ... ] (212)

r 12o r r

3Ba jC (3,0)
Er(3,0) = nRr[Ik2A 2

- nT nr 21 n2T r ... (213)
r n 4  oo 3T 23

where ko and Ao = wave number and amplitude of waves in an ideal gas, and where
Ba = nonrelativistic (unrenormalized) second radiation virial coefficient, and
Cr( 3 ,0 ) = relativistic third virial coefficient for a homogeneous (D = 3 and
dr = 0) mechanical radiation field given by21

( 3 a, aa a a2 'Pr
Cr(3,0) = C - 3[2BaB + (Ba)] t - 3(Ba + Ba ) Z il+-t (214)
r r r r r a

where ,pa is given by equation (202)' and 'a [not to be confused with equation
(51)] is given by

2 1

%Ba() + a 2/3
a +a T IBr(215

r r R Ba(TR) + Ba(TR)
R r R

The procedure for calculating Ba and Ca is given in Reference 21. The corre-
sponding state equations for fractal radiation in a fractal real gas are given t-%

by

P (Dd) = nRT[--k 2A + nBa + n 2C (Dd ) + (216)
r r 1200 r r r

)B C (D,d)
22 r r r

E (D,dr) = nRT[-k A - nT - - n T -T..] (217)
r r 40 o oT 2T

where Cr (D,dr) = relativistic third virial coefficient for a fractal mechan-

ical radiation field in a fractal real gas and is given by

3,',-
,.r

s10
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a

a a~a+(a a a a)2 ,4 rC (D,dr) = Ca _ D[2B B + (Ba 2 n , D(Ba + B Zn 1 + - (218)r r r r r r a

+ d (Ba) 2  ev ,a

where the fractal dimension of the mechanical radiation in a real gas is now
Dr = D - dr which is lower than the fractal dimension D of the ground state of
a real gas. Note that in order to obtain equation (218) it is assumed that D
and dr are independent of T and V.

The calculation of the void ratio for radiation in a real gas then pro-
ceeds from equation (67). Note first the following approximation

E(3,0) + P (3,0) - T r (3,0) - nRTk2A2  (219)r r DT 4 o o

Combining equations (213) and (217) gives

Er (D,d) - 1r (3,0) = 1 n 3RT2  Ec (3,0) - C (D,d (220)

Placing equation (219) and (220) into equation (67) yields

() 2n2

r kmA2 T 3 [Cr(3,0) - C (D,d )] + --- (221)
r kA r 

0 0

where

a

C (3,0) - C (D,d -(3 D)1[2BaBa + (B a) 2 ]  a + (Ba + Ba 2 nI +-I
r r r r r r dra)/

- dr(Ba) 2 e p, (222)

Placing equations (201) and (214) into equation (222) yields

1 d

"C (3,0) - Cr (D,d) (3 - D)[C(3,0) _ Ca ] + -[ C(3) - Ca ] (223)

Combining equations (221) and (223) gives the following expression for void
ratio of mechanical radiation
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1 Yi = 2n 2 [) C (3,0) - Ca I + d T -L- [C(3) _ Ca~j+ (224)

V/r 3k 2A 2 1(3 - D) T r r r 9T
0 0

a a

It has been shown that the coefficients Br , Br , Cr , and Cr( 3 ,O) are all pro-2 2 21
portional to koA o . In addition, the radiation fractal decrement dr is pro-
portional to the radiation energy density so that

dr = r E r(D,d r) (225)

S TnRTkA2 + .
r 00

where Tr is independent of k and A o  It then follows that

C r(3,0) A 0C (3,0) (226)

Cr (D,dr) 2 A 2C'(D,d) (227)

Ca k2A2 Ca '  
(228)

r o o r

where r ,C(3,0) , and Cr(Ddr) are independent of k and Ao  Therefore

equation (224) can be written as

(-) = n2(3 - D)T [LC](3,0) +Ca'] nRT 2 ' [C(3) ca]t +-'-(229)
C] 3) Tra+4LT r.._

r

The void ratio for mechanical radiation in real gases is independent of wave
amplitude and frequency, and depends only on temperature and density. For the
case of fractal mechanical radiation in a homogeneous (D = 3) ground state, equa-
tion (229) becomes

E Vt 3 2, [ - Ca +[C(3 (230)
r

Equation (230) is somewhat similar to the result for the ground state in equa-
tion (208).

Even if the ground state is homogeneous (D = 3) the mechanical radiation
state can be fractal with fractal dimension Dr = 3 - d r  In general, however,
the ground state may be fractal, and the fractal dimension of the radiation
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field will be written as D = D - dr Only in limited temperature regions
will mechanical radiation in real gases have fractal properties, i.e., those
regions for which (AV/V)r > 0 in equation (229). The fractal dimension Dr
of mechanical radiation can be calculated from the general radiation Lagrangian
formalism given in Section 5. The voids in a mechanical radiation field are
due to the interaction of the excitations of a real gas with the vacuum state.
Mechanical radiation in an ideal gas is not fractal.

8. VOID RATIOS FOR FRACTAL SOLIDS AND QUANTUM LIQUIDS. In this section
the void ratios for the fractal ground state and excited states of solids and
quantum liquids are calculated. For simplicity only the T = 0 state will be
considered. In order to use equation (38) for the calculation of the ground
state void ratio, the T = 0 energy density and pressure must be calculated for
both the fractal and homogeneous states. It will be assumed that

E a = An O (231)
0

pa = ( o - l)Ea (232)
O o o

where A and co = constants independent of density. Using equation (29) with
yo and Do taken to be constants independent of density gives the renormalized
energy densities of the fractal and homogeneous systems respectively as

E a0
Eo(Do) = G(D) (233)

E a

E (3) (234)
0 G(3)

where

G(Do ) = Du 2 D a (2 + y ) + D (1 + o) + 1 (235)
0 0 0 0 0 0 0()

G(3) = 3o - 3(2 + , ), + 3,f + (236)
0 0 0 (

Then the difference in energy densities for the fractal and homogeneous states
is given by

(3 - Do)Fo Efa

Eo(D) - (3) = 00 (237)
0 0 0 G(3)G(D) 2
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where

2
F =o - (2 + yo)o + Y + 1 (238)

0 0 0 0 0

which satisfies

G(D 0 D OF + 1 (239)

G(3) = 3F + 1 (240)
0

Combining equations-(231) and (234) gives

dE (3) o Ea
0 0 0 (241)

n dn G(3)

and therefore equation (38) gives the following expression for the T - 0 ground

state void ratio for solids and quantum liquids

(AV) [E (D) E 0(3)]G(3) (3 - D 0)F 
%

0E a0(D 0(242)" o a oG(o )

0 0

In addition to the obvious dependence of Do , the void ratio depends on the

constants Go and yo

Often in the literature the average energy per particle is introduced as
follows 1

a E

c =- a/n = AnO = AxK (243)
0 0

where x is defined by n =x 3 . This gives

CO = K/3 + 1 (244)0

19Using the parameter K gives

2
G(3) = - - KY + 1 (245)

DK 2

(D + 1 (246)
o 9 3
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F = . ( - - Y) (247)

These functions are expressed in terms of both K and yo

Of particular interest are the cases of the non-relativistic and ultra-
relativistic non-interacting degenerate T = 0 Fermi gases. The non-relativ-
istic Fermi gas has the following properties

Yo = 2/3 K = 2 a = 5/3 (248)
0

G(3) = I G(D) = I F = 0 (249)

For the ultra-relativistic case these quantities are

Yo 1/3 K = I 0 = 4/3 (250)

G(3) = I G(D ) = I F = 00 0

Because Fo = 0 for the ideal non-relativistic and ultra-relativistic Fermi
gases, it is clear from equation (242) that no voids exist for these cases.
Ideal non-relativistic and Lltra-relativistic Fermi gase§ are homogeneous, with
Do = 3

In general the GrUneisen parameter y is a function of the index K . For
instance, the effective mass approximation for an interacting system gives the
following expression for the zero-temperature GrUneisen parameter1 0

I - 4 7
"o = :o -- (252)

o 3

Using this relationship gives 10

G(3) 1 = 4o - 3 > 0 (253)3) O

4
K Do_ 4 4

G(Do ) '0 I + 9 D 0 - ( D - 1) > 0 (254)

Fo - = (o -1)> 0 (255)

Equation (252) is valid only for K > 5 or uo > 8/3 . In general the value of
Do for solids or quantum liquids may be determined experimentally or possibly
theoretically from a T = 0 Lagrangian formulation outlined in Section 4. In
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general T - 0 solids and quantum liquids are fractal for all physical densities
because equation (242) shows that (:.V/V) o > 0

Consider now the void ratio of mechanical waves in a solid or quantum
liquid. For simplicity only waves in a T = 0 system will be considered. The
wave equation (59) can be simplified by using equations(231) through (234) and
the approximation Ejr/Ej = Eor/Eo with the result that

E.
D P (y -r P) = D Eo ( o - 1)( o - yo) (256)o E. o o or o or o 0 orJ

and therefore equation (65) can be rewritten as

dE dE
2 or or Ea

DnD( + yo)n + C E = E(257)
o 2 o dn o or or

where

Co = Do O(y ° - Yor ) + Do (1 + Yor ) + I + T or[(I + Y0 )P - K ] (258)

and where the relation dor -Tortor is used which is similar to equation (2,25).
that was used for the real gases. Assume now that9

E -- K kk2A2  Ea = I Kak2 A2  (259)
or 4 o or 4 o a a

where ka and A a = nonrelativistic wave number and wave amplitude respectively,
and k and A = relativistic wave number and wave amplitude respectively. Placing
equation (259) into equation (257) gives

D 22 D dK
Kon ---5" [ 2n n +  K n (k-A-) (260)
dn- dn

+ I k AK G (DO  ) = -2- k2A Ka
4 o r o' or 4 a a o

where

2 d2K dK
Gr(Do )_D 2- o 0 1++C261)r a or K o dn- a K dn 0 ( )
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Using K 0 n ° in equation (261) gives

G (DoTo) = D a - D a (2 + y) + C (262)
r 0or oo0 0 0 0

Do - Do a(2 + -) + D ( + ) +1 - [K 0 + yo)P]
0 0 0 0 or 0 or or 0 ( 0 0

If kA is taken to be independent of density it follows from equation (260) that

k 2A 2K a/Kk2A2 a ao o
k rDA oo (263)

G r(DP r)

Combining equations (34) and (263) gives

k 2A 2 = k2A 2 G(D )/Gr(DoTo) (264)a a o r oor

Similarly, from equation (260) it follows that

E o(Do o) = E a /G (DOT) (265)
or oor or r 0or

E (3,0) = a /Gr(3,0) (266)or or r

where

G (3,0) = 302 3o (2 + yor ) + 3y + 4 (267)
r o o o or

Taking Do = 3 Tor =0 and Yor = 1/3 in equations (235), (262), and (264)
yields equation (121) of Reference 9.

The calculation of the void ratio for mechanical radiation in a fractal
solid or quantum liquid follows from equation (68). First determine the en-
hanced energy of the fractal radiation state from equations (265) and (266)
as follows

E a [G r(3,0) - G (D O I orE(D O , Eor(3,0) = or26r8 o
or oI or or C; (3,O)G (D ,T (268)

r r o or

where
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Gr (3,0) - G r(DoT) (3 - D)For - T or[(1 + yo)P - Ko] (269)

For = a -0 0(2 + )or + Yor +1 (270)

Calculate also the following expression

dE (3,0) o Ea

E (3,0) + P (3,0) or o or (271)
or or dn = r (3,0)r

Then equation (68) gives the void ratio for mechanical waves as follows

(3 - D0)For + Tr [K°- (I + y)Poro (272)kv/ oG (DO
or o r o' Tor

Note that

G r(3,0) = 3F + 1 (273)r or

G(Doo) = DoF + 1 + T [-(1 + yo)P - K ] (274)'r r oor or 0 0 o

A homogeneous ground state (Do = 3) can have a fractal radiation excited state
described by

( ~ T T[Ko - (I + yo)P Ior r or o
V or or i G r(3, or (275)

where

G (3,To) = 3o2 - 3c (2 + yo) + 3, + 4 - r[K - (I + - )P ] (276)r or 0 0 or or or o a a

Both equations (272) and (275) are valid only for (IV/V)or > 0 and this re-

stricts the density regions in which radiation voids are possible. Only in
the unphysical regions below equilibrium density are equations (272) or (275)
negative. In fact at the equilibrium density of a T = 0 solid or quantum
liquid one has Po = 0 so that (AV/V)or > 0 at this point. Radiation voids
are also possible in the high density regions beyond the equilibrium density
of an interacting system. Note that for ideal non-relativistic and ultra-rel-
ativistic T = 0 Fermi gases (I + yo)Po - Ko = 0 , and Do = 3 , and from equation
(272) the radiation state is homogeneous.
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9. CONCLUSION. ThL renormalization group equations for fractal matter
and fractal mechanical radiation are presented and a Lagrangian formulation
of these equations is developed. For limited temperature and density regions

the equilibrium fractal dimensions of the ground and excited states of real
gases, solids, and quantum liquids. may possibly be obtained by minimizing the

Lagrangian density with respect to the fractal dimension of the system. Ideal
non-relativistic and ultra-relativistic quantum thermodynamic systems are not

fractal. For interacting thermodynamic systems the ground and excited states

are fractal in nature. The ground and excited states of real gases are fractal
only in limited temperature regions. Although in general D # 3 it has not been
shown that the voids in matter and mechanical radiation fields are self similar,

which is a basic characteristic of fractal systems.
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Figure 1. a) C- C3  as a function of reduced temperature;

b) T3/aT(C* - Ca*) versus reduced temperature. When positive,
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MODELLING OF THE LEAN FLANMMABILITY LIMIT IN FLAME THEORY1

Richard Y. Tam
Department of Mathematical Sciences

Purdue University School of Science at Indianapolis
Indianapolis. IN 46223

and

G. S. S. Ludford
Department of Theoretical and Applied Mechanics

Cornell University
Ithaca, NY 14853

ABSTRACr. The phenomenon of the lean flammability limit is modelled by a %

four-step reaction mechanism. Analytical results, namely that a fuel mixture
will not burn if it is too lean, are obtained through use of activation-energy
asymptotics.

I. INTRODUCTION

The use of the one-step irreversible reaction in combustion modelling has
wielded much success, particularly in the context of activation-energy
asymptotics [1]. However, the neglect. of radicals, or intermediates as they
are sometimes called, has precluded the modelling of some important phenomena.
One of the these, the lean flammability limit, is the subject of study in this
paper.

By the lean flammability limit, we mean the phenomenon whereby a fuel
mixture is incapable of burning when it is too lean. Of course, a mixture may
not burn due to other causes, e.g., excessive heat loss, flow divergence,
etc., the modelling of which has been successfully done by the use of the
one-step model. The lean flammability limit, however, differs from such
external effects in that it involves a property of the mixture itself, namely
the fuel strength. It has been conjectured that the cause lies in the
chemistry, i.e., the reaction mechanism, thus necessitating the use of
multi-step kinetics in the modelling of this phenomenon.

The two-step Zeldovich-Linan mechanism [2] and other simple multi-step
schemes studied by Fife and Nicolaenko [3] uncovered many flame phenomena,
among which are stretch-resistance ([4], [5]), hysterisis, flame plateaux and
kinetic extinction (op. cit.). but they cannot model the lean flammability
limit. Peters and Smooke [6] attempted to model the phenomenon by using a
four-step model:

F+R 1 ---- + R2

2 2
R2 + 02 -* 2R 1  +

2R + -0 P +  M

2311This work was supported. in part. by the U. S. Army Research Office.
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Here F is the fuel. 02 the oxidant. R and R2 the radicals, P1 and P2 the

products, and M a third body. Close examination of their results, however,
shows that the phenomenon modelled there was the kinetic extinction phenomenon
whereby a mixture, if it burns at all, burns at or above a critical
temperature. We shall not discuss the details here, but merely note that they
can be found in [7].

We consider here the four-step model

F + R R + C E CO

2 2
R 2 + C - 2R 1  2 0

2R1 + M -- 2P2 + M E4  0

Here F and 02  are respectively fuel and oxidant, RI1 R2  and C are

intermediates, P1 and P2 are products and M is a third body. The first two

reactions have high activation energy while the last two have small (taken as
zero here) activation energy.

II. OVERNING EQUATIONS

To focus on the chemistry, we consider the model in the context of the
-steady plane flame, which is governed by the following dimensionless system of
equations:

dY _ - 1 d2Y = _ lRYe-S/T (1)
dx dx2  1

dR - r- dR - /VT6 /
d _ 1- 1 - d 2R _ = ITRYe - O/ T  + Z 2Sce-r/ - 5 R2B (2).

dx dx2  - 1 2

d2
-S _ N 1 dtRYe - 8/T - 2SCe- r6 /T 3SX (3)

x d x 2 - 1 23

dC d 2  - f1RYe -/T - 02SCe- r OT(

dx

dX -1 d 2  X (5)
dx dx 2  2 = 5

736

-V. *



dT dxAd 2T _ qlOlRYe-O/T + q20 SCe-rO/T + q323SX
dx dx 2  11 2 2 3 3

+ q4R 2B (6)

Here Y, R, S, C, X, and B. respectively, are the normalized mass fractions of
the fuel F , radicals R1 , R and C, oxidant 02 and third body M, T is the

temperature; 2, A, X, Q, and 3 are the Lewis numbers (assumed constant) of F,
R1 , R C, and X respectively. The non-dimensionalized heat releases of the

four reactions are q1 - q2, q3, and q4 respectively, whereas 21, 22' 23 , and 14

are the- Damkohler numbers, assumed independent of temperature. The
non-dimensionalized activation energy 0 is derived from the first reaction
and r = E 2/E1 , the ratio of the activation energies of the second and first

reactions, is taken to be less than L for simplicity. These equations are to

be solved under the boundary conditions

Y, R, S, C, X, T -4 Yf, 0, O0, Xf, Tf as x-*- (7)

boundedness is required as x-- + .

Assuming that the Damkohler numbers are ordered: 3 < 0 < 2 < 1
3 4 2 1

and denoting by.T2 3 the flame temperature such that

22e-rO/T 23  = 93

one can show that no flame exists with flame temperature below T2 3; a detailed

discussion can be found in [8]. Apparently, this is the kinetic extinction
phenomenon; analysis of the flame structure, however, reveals more. We now
focus our attention on temperatures close to T2 3.

III. ASYMPTTIC ANALYSIS

Solution to the system (1) - (7) will be sought in the limit of infinite

activation energy, whereupon all reactions are confined within the reaction

zone where the appropriate coordinate is = Ox . The mass fractions aree
ordered

2

, R= 0-  1 e-O/T S - 2  1 eO(r -2)/T

4 2 4

C = Cb+0-lC, X X +b+ 0X- T T + T-
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where the 0(l) variables in the f-structure are designated by a tilde; and
the subscript b denotes the burnt state. Since for T.close to T2

-G1e_/T * -rO/T*

R and S are exponentially small; more precisely, the radicals R 1 and R 2are

produced and consumed entirely within the reaction zone, so that on the
x-scale,

Y =Yf. (1 - e ) , R =S 0 , C C= (8)
0 C

X Xb +(X. 0 - Xf)e 5x 
T f + (T* Tf) e X

for x 0 respectively. Also, we find

C 0  = f X- X - (9)

The governing equations in the reaction zone are, to leading order:

- --- =-DR Ye X (10)

j/T2  rT~r _ D 2B (1
0 -DR le + 2DSC 0e D(1

2 ~ r

d 2 C rTr/T/(13
0 = DR Ye DSE - DSQ1,(12

- E 2~- = -DSX b (14) t

df 2 q 1 Di T/ + q q3 DSX b + q 4 DR"B (15)

Here

'l~~a ~2 -3 1D 2/

-D _ 1--2/T* = 0 D 2/*m

r
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is an 0(l) parameter and is to be determined as part of the solution for Mr .

the reference mass flux.

Equations (11) and (12) express what may be called the local equilibria

of the two radical species R1 and R2 : given Y, we find

R= S = 0 (16)

is always possible, whereas there is a second solution

Cb e +Xb B

(17)

Cbe+ Xb

for Cber/ 2  Xb > 0 . Since radicals must be produced in the reaction

zone. the second solution must hold in some part of the reaction zone; on the
other hand, that part cannot lie on the fresh side of the reaction zone since

R and S must vanish there and Y does not.

We conclude that the reaction zone is divided at i = if (say) such that

the solution (16) holds for i f'and (17) holds for i > i At

if= f continuity of the solutions require that

T r* In( )
r b

Since the maximum temperature is attained as i --- + . it follows that

Xb Cb

or, equivalently, because of (9).

Xb xf ()

This condition in turn implies that Yf must be greater than a certain value

for the solution to exist, as will be shown later.
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Substitution of the local equilibria expressions (17) into the fuel,
temperature and oxidant equations (10). (15). and (14) yield

_____ __ j2T/T2
rV- B- (19)

d 2  e Te , , .Cer', + X '

rT/T2
Ce 9

2 D (ql + q3 -q 4 ) +  (q2 -q 3 
+ 2q4 ) brT +X ]

Cere + Xb

-i22T/T
CDe Xb Ye e( 20)

ri/T2 B (0

Cb e 9+ Xb

d 2  e'~ 2T,/T,,
C95- Xb Ye •(21)

d2 CberT + Xb] B

Boundary conditions obtained fron matching with the outer solution (8) are

d'-- Yf + o(1) d = (T - Tf) + o(l) . and

-- = 9(Xb- Xf) + o(l) as

(22)

Y = o(l) . T = o(1) , X = o(l) , as - + o'

The above system is then solved for the special case

ql I q 3 
+ 2q4  = 0. q1 

+ q3 - q4  > 0

for which an analytical solution is possible. We shall not give the details
here but only quote the final results. We find

M = I( y r, y) (23)

r 4(q + q2 
+ q Yf B
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Yf rYf ;1/2
X Xb - 2  1i/2( ~ ~'-* r ~ 24

41 (y ; r. y ) o cosh ( y -y)+ 1

wherev

~ [i22X+
er=--Iny ) 26

andn

2 Xb

(there is also a local structure for the radicals R and R at =

1 2

namely that which connects the trivial solution (16) with the local

equilibrated solution (17). Details can be found in [8]).

IV. CONCLUSION

For the special case considered, the relationship between Yf and X

is given by (24) and a similar result will be obtained, albeit numerically.
in general.

Figure i gives a plot of Y /Xf vs. Xb /Xf for the parameter value

~1r amel We believe it is typical; it shows that

1

corresponds to

Yf > Xf =Yf

Since this is the condition under which a solution for the flame obtains, we

call YF the lean flammability limit. A mixture will not burn if its fuel

strength is below Yfii
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THE SOLUTION OF THE TYPE-PROBLEM FOR N <4

Nam P. Bhatia
University of Maryland Baltimore County

Catonsville, MD 21228
and

Walter 0. Egerland
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Aberdeen Proving Ground, MD 21005-5066

Introduction

At the second and fourth Army Conference on Applied Mathematics and Computing
we introduced the notions of loop and elementary orbit. The implicational strength
of loops and elementary orbits enabled us to prove two refinements of Sarkovskii's
Theorem, Theorem (SR) and Theorem (SR II) [2,31. In fact, from Theorem (SR
II) follows, as a corollary, a new proof of Sarkovskii's Theorem in a most natural
way. If we call each of the (n - 1)! different n-periodic orbits a continuous function

f : R -+ R can have a period type, one is naturally led to what we have called the
type-problem.

Statement of the Type-Problem. Let f : R - R be continuous. Given a positive
integer n and an n-periodic orbit of specified type, find for every positive integer m
the types of m-periodic orbits that must exist.

At this stage of knowledge the type-problem is an open problem of considerable
complexity. Even the restricted (or "little") type-problem appears to be of great
difficulty.

Statement of the Restricted Type-Problem. Let f : R - R be continuous.
Given a positive integer n and an n-periodic orbit of specified type, find for every
positive integer m < n the types of m-periodic orbits that must exist.

It is well to point out that Sarkovskii's result gives only the (complete) answer to the
"typeless" problem: "Given a positive integer n and an n-periodic orbit of any type.
For which other integers m does there exist an m-periodic orbit of any type?"

In the first part of this presentation the solution for the restricted type-problem for
N < 4 is given. It is necessary for this purpose to introduce the notion of a separated
loop, a direct generalization of a loop. We shall see that separated loops do not obey
a linear order. This is in contrast to loops and elementary orbits that are not only
linearly ordered individually, but also when taken together. Accordingly, the various
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period types that appear in the solution for the restricted type-problem for N < 4
are not linearly ordered.

In the second part of this presentation our notions make contact with the notion
of turbulence as introduced by Block and Coppel [4]. We show that the notions of
turbulence and infinite loop are equivalent, i.e., we prove that "f R --- R is turbulent
if and only if f has an infinite loop."

Unless new, our notation is unaltered from [1], [21, and [3].

This presentation represents only part of our joint work under the U.S. Army Summer
Faculty Research and Engineering Program.

1. The Partial Ordering of the Separated Loops.

Definition: A p-periodic orbit (p _ 2) is called a (m, n)-separated loop if p =

m + n, mn > 1, and the points of the orbit satisfy

Xm+n = K X 1 < ... < Xml1< Xm+n-I < < Xm1 < Xm

We adopt the notation that L,,n shall mean that f : R -- R has a (m, n) -separated
loop.

We have the

Theorem: Let f : R - R have a (m,n)-separated loop. Then there exist two
(m - 1, n)-separated loops and two (m, n - 1)-separated loops, except that a (2, 1)
or a (1, 2)-separated loop only implies one (1, 1)-separated loop. In particular,

Lmi,n -#= Lm,n ==> Lm,n.

The proof is a direct application of the following well-known lemma.

Lemma. Let J1, J2, ... , J, be compact intervals such that f(J) D J,+,, i = 1,2,...,n- 1
and f(Jn) D J1. Then there is a point x0 E J, with xi E J+ 1,i = 1,2,...,n - 1, and
X0 = Xn. The point z 0 has period n or n', where n' divides n.

The following diagram displays the partial ordering on all separated loops.

3,11

%L2 2iL< ' L 40' ' ,

•... 1,3?% .

That in general no other implications hold can be demonstrated by examples.
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2. The Solution of the Restricted Type-Problem
for N <4.

The six types of 4-periodic orbits are given by

P4 : X4 = X <z 3 < < 2 L 2 ,2 : X4 = xO X < X3 < 2

L 3,1 : x 4 =Zo<xI < 2 <x 3 L, 3 : x4 =xO<x 3 <x 2 <x 1

E 4 : X4 =Xo <X2 <XI <X3 E4: x 4 =X <xO < 3 <x3 1

We present the solution for the restricted type-problm for N < 4 diagrammatically:

P

34

L 2,2

The proofs of the indicated implications follow from theTheorem and Lemma in
Section 1.
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3. T 4=#- L(oo).

Block and Coppel introduced in [41 the concept of turbulence. By definition a contin-
uous function f : R - R is turbulent if there exist compact intervals J and K such
that J fl K is at most a singleton and

JUK C f(J)fnf(K).

To show the equivalence: "f : R -- R is -turbulent if and only if f has an infinite
loop", we recall a convenient notation and two lemmas.

For intervals J and K we write J < K if x < y whenever x E J and y E K. It follows
that J < K or K < J if and only if J n K is at most a singleton.

If we call the interval J' minimal with respect to the property f(J') = K if no proper
subset of J' has this property, the first well-known lemma reads as follows.

Lemma 3.1. If f : R -* R is continuous and J and K are intervals such that K is
compact and f(J) D K, then there is a minimal compact interval J' C J such that
f(J') = K.

We finally recall the following lemma [3].

Lemma 3.2. If f has a critical point co such that co < c- 2 < c- 1, then f has an
infinite loop satisfying

Co < ... < c-n < ... <c- 2 < c- 1 .

The same statement holds with all inequalities reversed.

If we say that property T holds if f is turbulent, we have the following

Theorem. T = L(oo).

Proof. Let f be turbulent. We assume without loss of generality J < K. Then
there are minimal compact intervals J, C J and J2 C J such that f(J) = K
and f(J 2 ) = J. Since f(J J2) c f(J 1 )nf(J2 ) = KAJ and KnfJ is at most
a singleton, we conclude from the minimality of J, and J2 that J fn J 2 is at most a
singleton and hence we have either J, :5 J2 < K or J 2 < Ji :S K. In case J S J2 < K,
we conclude the existence of a critical point co E K and predecessors c- 1  J, and
c- 2 E J2 from the respective conditions f(K) D K, f(JI) = K, and f(J2) = J D J1.
From J ! <_ J2 < K follows c-1 S c..2  cO. We note now that no equality in the
last statement can hold for that would force J2 to be a singleton which is impossible.
Hence f has an infinite loop by Lemma 3.2. The case J 2 < J, 5 K is similar.
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Conversely, if f has an infinite loop, then there is, in particular, a critical point co
and predecessors c- 1 and c-2 satisfying co < c-2 < c-1 (or co > c-2 > c_1 ). We let
J = [c,c-2 ] and K = [c_ 2,c_1] and verify that J < K and f(J) ff(K) D JUK
hold, i.e., f is turbulent. This completes the proof of the theorem.

We remark that for applications the simple sufficient condition x 3 < x2 < xO < x 1

and Lemma 3.2 are excellent means to establish turbulence.
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NEURAL NETWORKS AND THE SYMMETRIC GROUP S^ 

John L. Johnson 
Research Directorate 

Research, Development, and Engineering Center 
Redstone Arsenal, AL 35898-5248 

ABSTRACT.    A permutation of N objects can be implemented by a 
neural net which recognizes the initial arrangement and then replaces it 
with the final arrangement. This is the same process found in parallel 
computer architectures .using symbolic substitution principles, and in turn 
is the same function performed by optical correlator devices. Since every 
group is isomiorphic to a subgroup of S^^j, the symmetric group, these 

interrelationships provide a powerful mathematical base ^or optical 
computers and neural networks. Neural nets for the first few symmetric 
groups are presented. The number of interconnected nodes is shown to be 
related to the number of strictly parallel Inputs and outputs, and a group 
categorization for any parallel interconnected network is discussed. 

1.  JNTRQDUCTIQN.    There exists a functional correspondence among 
neural networks, optical correlators, symbolic substitution, the 
symmetric group S^, and digital computers. It provides a mechanism for 

the design, implementation, and use of paraiiel/serial processor 
architectures. The basic common feature is that of symbolic substitution: 
identify a given symbol or pattern and replace it with another symixji or 
pattern. Symbolic substitution was introduced by Huang^ '"-■' as a mernuo 
of implementing digital computers with optical techniques, The functional 
equivalence of optical correlation and symboHc substitution was recently 
stated by Casasent."^ The concept of a digital co.mputer as a finite state 
machine has long been recognized and provides a direct correspondence 
with the permutation elements of the symmetric group 3|\j. J\]e ability of 

neural networks to recognize and replace spatial patterns, and thus 
perform symbolic substitution, has been shown by Grossberg.^ A common 
thread has been woven through these five ideas, and their unification has 
in principle been achieved as indicated symbolically in Figure i. 
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The1r eQu1va1ence serves as a revers1b1e rec1pe for solv1ng processor 
arch1tecture problems, for des1gning explicit neural networks which 
implement symbolic subst1tution, for specifying the optical i·,ardware, 
ana for programming the processor by duplic~t;ng !hP. group structure of 
the problem with the group structure of the processor. 

II. CORBESPONQENCES, The foil owing ·correspondences are 
summarized tn figure 2. 

a. Su01boljc Silbstjtution. Symbolic sut>stitut:on cons ists or 
identifying a given pattern or symbol, removing it, and rep lacing it with 
another pattern or symbol. The act of replacement imp: ies the existence 
of gain in a physical system. · 

b. Qotica! Correlators. Consider the correlation of two 
funct tons, given by . 

00 

C (x,y) = J J dudv A(u,v) B* (u-x, v-y) . 
-oo 

When A=B in a optical matched ri Iter correlator, tho out;>ut is a plane 
wave which can then i>e brought to a point focus. The point 
approximates a delta function centered on the iocation coofd inates or 3. 
if, on the other hand, B is initially a delta function, then the corre
lation is a replica of the pattern A. again c~ntered on tt1e 'ocalion of 
a<6) . Suppose we have two correlators. with reference !mages f and g, 
respectively, an(! they are joined so that the output of the f irst one is · 
the input to the second. The first one identifies all occurrences of f in 
its input scene and supplies a corresponding de.ta function map to the 
second. It, in turn, proouces an output scene with its reference image g 
written at every iocation where f was present in the original scene. 
This tandem correlator has then performed symbolic suost ituuon f-tg. It 
recognized the subpattern r and substituted !n its place the s:~ !Jpauern g. 
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c. Neural Networks. ~ext consider the Grossberg neural modei oi 
'S' an instar triggering an outstar' '· The instar recognizes the 

previously-encocJecJ training distribution r ancJ delivers a recognition 
signal to the outstar. It, in turn, plays back a second previo;us !y-encoded 
distribution g on its field of neural nodes. Again, this is the function 
done by symbolic substitution= recognize f and substitut~ g . As noted 
earlier. the actual act of substitution implies gairi. 

o. The Symmetric Grouo. The sy·mmetric group SN is the group of 

all permutations of a collection of N distinct objects. A permutation 
element consists of an initial arrangement, or pattern, of trre N ob jec.ts, 
which .is first identified, and is tnen replaced by a s~ond arrangement 
or theN objects. A single permutation corresponds t o one 9ct of 
symt>oi fc sut>st itution. 

e. D..ig.il~L~omouters. A :digital computer, viewed as a fini te 
state machine-, goes from its initial state of data words and addresses 
to its final state by executing its program. The initial and final states 
are the initial and final arrangements of N oDjects, N being, in this case, 

. a very large rl.lmber, and the program corresponds to the part icu lar 
permutation element which was used. 

ttl. GBOLf NETWORKS. In this example, neural networks are 
devised which model group elements and the group product ru le. :t 
leads to a characterization of the group in terms of the number of nodes 
and input comections reQuired to model it. This characterization is then 
reversed so that a given network with a spec :fl ~d number of nodes and 
il"'p'Jt connect ions per node can be idenli f i~cJ w iU1 u 1~ yruu:; r1uw~·t'r :"~ . t t 

is important to note that this reverse charatertzat ion ·s ircomp tete: it 
c!oes not take into account the actual connection matrix. Wha t it sa~s ~ s 

that for the particular number of nodes and in~erconnects g:ven. i t 'NCJ!C 

be possible to form the Ntt'l group, out does not necessar i ly indicate that 
suct1 networks are actually present. 
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Cayley's theorem states that all groups are isomorphic to a subgroup· 
of SN. Neural networks which form all the permutation elements and 

provide a11 possible group products <at least once> can accordingly model 
processes described by a group. All permutations of a collection of N 
distinct objects comprtse the elements of SN . There are Nl elements. The 

group operatton is two successive permutations? 

An ideal to~any int erconnected Grossberg slab (memoryless) with 
recurrent, shunt.ing, on-center/off-surround subnets wll.l , in the extreme 
· ... 'r.""r'.J 1;m;t. c~;.,·ose the sl·ng'e ,...ost actl·ve nc ·-~e ~r·d .-l ... ;ve - ! • ~ ~--e ~. ~ \-.. ~~ .- -... .., ; tU l t t L , h~ttl t It t '- I U d t "'• t .:,;,, \. 11 V \o t tC' t.;., \o•J 

zero. a Consider such a slab with N nodes. It can haveN distinct states, 
each consisting of one active (and normalized) node and N-1 inactive 

·- nodes. If the nodal output channels are permuted toN possible 
connections, then that slab can perform one permutat ion. 

Figure 3 shows the networks for S 1, s2, and s3 group e-lements. The 

Grossberg subnets reautre that each node receive an input from all the 
nodes including itself, ·plus an input from each of theN input channels.9 

Some of the inputs excite the node and some inhibit it. Here, both types 
are simply counted as inputs. Outp~ts are not counted. To form all the 
elements Cwhich, as yet, are not connected-to each other> of SN reQuires N 

nodes per element and 2 N inputs per node. rhere are Nl elements. 
The total number of nodes ts N·Nt and the total number of tnput connect tons 
is 2N2·Nt. Suppose further we wanted to be able to perform. at !east 
once. all possible group products. fhen each element's N cutputs m;.;st 
connect to the inputs of every element including itself. Th is is shown in 
Figure 4 for an element of the s3 group .. This requires additionai input 

connections per element consisting of N times the number of elements 
transmitting to it. This is true for every element. The total numb~r c.~· 

input connections for group products is N·(Nt)2 . irtesA group and 
element counts <:1re shown in Figure 5, where t.he slandard gamma 
function is shown for comparison. The overall number of input 
connect ions per node is (2N2NI + N(NI)2 )/(N(N!)) • or 2N • N! . !r. 

1oose orders of magnitude, and for large N • the number of inputs is 
roughly the sQuare of the number of nodes. 
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The number of distinct objects is N. The above qroup networKs car
handle them all in parallel. N can be interpreted as the numoer of oraiiei
inputs which the group system can handle in a fuily interconnecteu
manner, and thus is a measure of the parailel capacity of a mer-orviess

n,-a network. Informally, it represents how many things the networks
can do at the same time. Given the naralel' capaci'hy N, thcn tlhc .umher of
nodes, erement input connections, and group product input connections car
be listed. On the other hand, given the node and connection count for a
network, one can estimate the parallel capacity, or group number, for 'Tat
network. It is known that in the neural cortex there are about j inter-

connections forJ neurons. 10 This agrees with the qroup construction. For

10 interconnections per neuron in the cortex'O the parallel canacity
would be between N=4 and N=5.

Consider the group networks discussed above. if givern oasis is chosen

for the permutation elements, such as the binary N-node siaos, tnen
one can distinguish between element operations and group ooerations. The
element operations can be done in Parallei. They can be caliea up to
perform a serial sequence of group operations. The elements are analogous
to subroutines and the sequence of group operations is like an overail
software proaram This gives a guide from group tneory to'snow whicr
operations should be done in parallel and which snoula De done in series K

a symmetric group computer" is made capable of calling up a desire d

.-- uo.re Of o,'up operations rnatcning tnose in the .rO'9" u' . e :"dc.

then these comprise the program sequence ann are done seriaiiy Tne
individual group elements are the subroutines and can be done in parallel
using the neural net designs of Section 3, ana can be impiementea in
optical correlator hardware according to tne functional corresponaence
reviewed in section 2.b. of this paoer.

A basic feature of groups is that of closure. Any oroduct ',,

elements yields another element of the group. in principle, tner. serial
operations should be unnecessary because one could simply activate tme
single parallel elemenT representina the entire procuct of the otner
relevant elements. However, for large and comolex svstems, tne orooiem.

of finding this element may reauire takina the serial proaucts oT rne

other elements of the first olace it is for tnese systems t*a a
aroup comouter" may offer 3n advantage, not for those wncn (-a!) ce
nar, oiea sr~ ,tca ','
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NEURAL OPTICAL
NETWORKS CORRELATORS

Figure 1. Interrelationships among concepts involving symbolic substitution.

757



f -- g
a SYMBOLIC SUBSTITUTION

f ff -Z • g --

f 9

b TANDEM OPTICAL CORRELATOR

c. INSTAR-OUTSTAR NEURAL NET

"B C l :'

d. GROUP PERMUTATION

--i PROGRAM-,i -,

e. DIGITAL COMPUTER

Figure 2. The common functional property f-pg is found in optics,
neural nets, group theory, and computers.
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Si:
ONLY ONE ELEMENT

ONE OF TWO
ELEMENTS

S 3: ONE OF SIX
ELEMENTS

Figure 3. Grossberg subnetwork constructions of group elements
for the first three symmetric groups.
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Figure 4. Additional connections among group elements, shown for S3, which permit
application of group product rule between any pair.
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THE INTERACTION OF NONLINEAR HYPERBOLIC
WAVES:

A CONFERENCE REPORT

James Gumm I.:

Courant Institute, New York Universir.
New York, N. Y. 10012

ABSTRACT

Nonlineariies in wave equations lead to focusing and dcfocusing

of solutions. Focusing causes sharply defined wavefronts. The interac-

tie, of such sharply defined wavefronts and more generally of non-

linear hyperbolic waves is of fundamental importance and includes

such phenomena as Mach triple point formation, shock wave diffrac-

tion patterns and the study of Riemann problems in one and higher

dimensions.

Recent progress in the study of nonlinear hyperbolic wave interac.

tions has revealed a surprising range of new mathemadcal phenomena

and structures. This mathematical theory should be useful in the

design of improved computatonal algorithms and in pan was

motivated by such consideratons. It is also of considerable interest for

its own sake as new mathematical phenomena and is also of interest in

terms of the direct insight it provides into physical phenomena.

I & .parted in part 1:1 the Appie4 Mathem iacal Science, sut.rogamn of the O 1 ie of Ene: . Research,
U S Deparmient of Energy. under cotract DEAC02."6.R030-
:Sqoed in part) the Art.) Research Office, grant DAAG,9-&8S.K-0188
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1. Introduction

1.1. The Problem Formulation.

We consider the nonlinear system of conservation laws

U, + F(U). = 0 (1.1)

and let

X. = X:(U) 5 ... 5 X.(U) (1.2)

be the cigenvalues of the Jacobean matrix

A(U) - (1.3)aU '

while

e,(u), • •, (u) (1.4)

are the corresponding right cigenvectors. Equation (1.1) expresses conservation of

the components of U':

T U(x, t) d = 0.

The cigcnvectors el (U) are the normal modes for the propagation of small amplitude

signals, linearized about the state U, while Xj(U) are the corresponding wave speeds.

The X, are assumed to be real, which is equivalent to the system (1.1) being hyper-

bolic. As we will see below, this assumption is not satisfied in all cases. Similarly,

we say that (1.1) is srictly hyperbolic if the X, are real and distinct. Points U0 of

coinciding wave speeds

k I(Uo) - xI. 00)

are called umbilic points. A ren'.rkable theory has resulted from the careful analysis

of these umbilic points.
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1.2. Examples.

Conse-vation laws are basic to physics and the equations (1.1) are often the fun-

damental or lowest order description of a physical situation. More refined descrip-

tions may arise as modifications to or perturbations of (1.1). For exazp-e the righ:

hand side may be replaced by a diffusion term to represent transport effects such as

viscosity or heat conduction. It may be replaced by a source term of a geometrical

nature, to represent flow through a duct of variable cross section or through a coord;-

nate system (such as radial flow in polar coordinates) in which volumes and densities

are not conserved. There may be source terms of a chemical nature to represent

s:ored (chemical) energy, not included in the state U. Some refined descript-ions will

preserve the same form as (1.1) but will add new variables and equaions. for exam-

ple to represent additional species in a chemical reaction or additional energy panrt-

tion modes for nonequilibrium thermodynamics.

The specific examples and theories contained within this framework are almost

unlimited. The Euler equations for a compressible fluid (gas) are in some sense the

protot)pe example. Here the conservation laws express conservation of mass,

momentum and energy while F defines the corresponding fluxes. The fluid can

describe several species (multi fluid equations) which can react chemically (chemi.

cally reacting equations) or mix (multiphase flow). Continuum equations of elastic

and elastic-plastic flow are defined by conservation laws. Magneto-hydrodynamics is

a conservation law. The equations for saturation and concentration of fluids in an oil

reservoir are of conservation type, as are the equations for adsorption.

1.3. Theory and Computation in Mathematics

Experimental mathematics refers to a working method in which computer exper-

iments play an essential role in the discovery of ideas and the formulation of conjec-

tures. While laboratory experiments, often filtered through the mind of a theoretical

physicist, have inspired mathematical thinking for centuries, the direct use of experi-

mental studies by mathematicians from computer simulations is a recent develop-

ment. There is no doubt that experimental mathematics has played a large role in the
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recent progress in our understanding of the interactions of nom'..near hyperbolic

waves. A numerica -liemann solver of a very general nature for 2 xz 2 systems was an

essential tool in the development of insights and conjectures to guide the mathemati-

ca theory [161. The key tools of an analytic nature have been bfurca"ion theory.

global analysis and geometry.

Equally important has been the connection of nonlinear wave interarnons to

applications. In fac: the wave interaction phenomena has a number of complex

aspects. Considered for their own sake, such problems are easily put aside for

theories which are more elegant even if less profound. However the firm anchor of

these wave interactions to such applications as oil reservoirs, elasticity and chemically

reactive flows have allowed the focusing of sufficient talent and energy for significant

progress to be made.

1.4. Scale Invariance and Riemann Problems.

The conservation law (1.1) is invariant under the scale transformations

X,, -sx,st, s>0 (1.5)

in the sense that

V(x, ) = U(sx, S,) (1.6)

is a solution of (1.1) if and only if U is a solution. The restriction to positive s > 0 is

required to preserve an entropy condition, imposed in addition to (1.1), for weak

solutions.

It is natural to look at scale invariant data for (1.1) and the corresponding scale

tnvariant solutions. These are called Riemann problems and Riemann solutions

respectively. The Riemann solution defines the large time asymptotics of a general

solution. In this sense and using the language of quantum mechanics, the Riemann

solution is the outgoing (W-) wave operator of a scattering problem [121. In fact tak-

ing s - in (1.6) aivcs scale invariant data

V0(x) = V(x, t =0) = U(sgn x t . = 0)
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and formally the solution V(x, t) is the infinite scaling limit of U(x. t) and thus defines

its large time asymptotic behavior. The mathemaucal proof of these statements as

weil as the analysis of further terms in the large time behavior has been given by T.-

P. Li: [23.24,26].

The limit s - 0 in (1.6) also defines a Riemann problem and its soiubon. This

limit is the instantaneous response to jump discontinuities at the origin in the data

U0(x) = U(x, t = 0). This second interpretation of the Remann problem allows the

following picture of a general solution. It will consist of a number of jump discon-..

tinuities (fronts) separated by smooth regions and possibly smaller jumps which cross

and interact with one another at isolated points. At an isolated interaction point, -he

solunion behavior is governed by a Ri"emann sout:ion. In this sense the sn:d. of

Riemann problems is equivalent to the study of the interaction of nonlinear l.ocaLized

waves.

We define an elementary wave to be a scale invariant (Riemann) solution of

(1.1) which also moves as a traveling wave:

U(x. t) = '(x - c)

for some c. In one space dimension, the elementary waves are the localized waves.

i.e. shocks, contact discontinuities, etc., while in two space dimensions they are the

intersection points of jump discontinuity surfaces, i.e. Mach triple points, etc.

The elementary waves are the basic building blocks for the solution of Riemann

problems; this is true in higher space dimensions as well as in one dimension. Thus

elementary waves are of fundamental importance in understanding the solutions of

Because of the reduction in the number of independent variables. eiemen:a.ry

waves in d dimensions are more or less comparable in difficulty to general solutions

in d - 2 dimensions and Riemann solutions correspond in approximate difficulty to

general solutions in d - 1 dimensions.

In particular the d =1 Riemann problem has a lot in common with the theory of

ordinary differential equations in the large. Methods such as global analysis,
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bifu.rcation theony and geometry are useful for both classes of problems.

See [1:. 12] for a more extensive discussion of the ideas presented in :his subsec-

tion.

2. Nonlinear Resonance

2.1. Introduction.

The umbilic points U0 with kit(,3) = X;_ (U) allow a degree of interaction or

nonlinear resonance between distinct modes el(U0) and e: - (U0) which is missing in

the s:rctly hyperbolic case. This fac: produces a novel and rich range of mathemat-

cal phenomena.

Nonlinear theories can be divided into those which are qualitatvely linear and

those which are essentially or globally nonlinear. The central feat ure of the

phenomena associated with nonlinear resonance and umbilic points is a striking

departure from the linear guideposts winch have dominated our previous understand-

ing of wave interactions.

Let

be the state space in which the solution U S S takes its values. The waves introduce a

type of coordinate geometry in S. An umbilic point is a singua.ity in this geometr.

To be precise, each eigenvector e;(U) defines a vector field on S. Toe :nieral curves.

.e. the solutions of the state space differential equation

ad. = e:(L') (

represent both coordinate lines in S and in their z, t realization. rarefacuon waV c C

which contribute to the solution of the one dimensional Riemann probec n The

realization comes from setting - x .(L*) and observ:ng :a: a •

U U(t) =U(.&) of (2.1) also solves (1.1). These rarefac-on a a. r% k-r -
-t
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tered rarefacton waves because they are constant on the characterstic lines = L

through the origi-.

Shock waves are defined by interpreting (1.1) in a weak sense., for example as

disributions or measures. Then jump relations are implied between the conserved

quantties U, and the fluxes Fi. We let [a] = a- = a- if a is a quantiry with a jump

discontinuity across a curve in space time and a= represents the values of a on the

right (left) of the curve. Then (1.1) is equivalent to

s[U] - [F] = , (2.2)

as far as jump discontinuities are concerned. In particular, two constant states

separa:ed by a jump which satisfies (2.2) define a solution of (1.1).

The solutions to (2.2) lie in families and define a geometry on S, in a manner

similar to the rarefaction waves. The resulting curves in S are called shock curves or

Hugonlot curves. They also become singular at an umbilic point.

1.2. The Standard Theory.

The standard theory for a single scalar equation is due to Oleinik [28,29]. It is

a theory in the large, but because of the restriction to a single mode, the geometric

singularities caused by resonances between distinct modes do not occur. In the

Oleinik theory, the solution to the Riemann problem is a composite wave formed

from a rarefaction wave with embedded jumps (shocks) within it. Considered

geometrically from the point of view of state space, it is formed by taking the upper

or lower convex envelop of the graph of the flux function. The chords in the envelop

correspond to jumps (shocks) in the x, t space solution while the rest of the envelop,

which lies on the graph of the flux function itself, corresponds to rarefaction waves in

the x, t space picture.

The standard theory for systems is due to Lax [19,201. It solves the Riemann

problem in the small (UL = UR) excluding umbilic points and assuming a convexity

condition within each mode
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also known as genuine nonlinearity. Under these hypothesis, there are no singlari-

ties in the geometry defined by the rarefaction and shock curves. Starrng at a given

stae U.. there is a unique half of the shock curve which is stable-nder forward =me

evolution and a unique half of the rarefaction curve which is realizable in X. t space

(because wave speeds must decrease when moving to the left from L'. to C, in x. I

space). These two half curves join smoothly and define the wave curve through UR.

There is one such curve for each mode. The solution of the Riemann problem is

accomplished by moving a required distance and direction on the n , n -I. . , 1 wave

carves, along a unique path which starts at UL and ends at U-. Each segment of this

path lies along a wave curve and corresponds to a shock of rarefaction wave in x, t

space. In each of the sectors between these waves the Riemann solution is constant.

The Lax theory [19] also allows linearly degenerate families, for which

<V X(U.1 ej(U)> - 0. (2.4)

For these families, shock and rarefaction waves coincide.

It is clear from these two standard theories that a global theory of the Riemann

problem would be built from wave curves which are in general Oleinik composite

waves. There was a general (and incorrect) impression that little of interest would

occar beyond this.

2.3. The Isolated Umbilic Point.

The theory. of an isolated umbilic point is due to Eli Isaacson, D. Marchesin. D.

Schaeffer, M. Shearer, P. Pacs-Leme and B. Plohr, with recent contributions by H.

Holden and C. F. Palmeira. Near an isolated umbilc point U0 with

X, (U 0 ) = ):_. (U 0 ) one can scale and blow up the singularity. This is equivalent to

replacing the flux function F(U) by its lowest order nontrivial terms. We assume

n = 2 and by a Galelean transformation, X, = X: = 0. so the blow up yields generi-
cally an F(U) which is a. homogeneous quadratic polynomial. There are some

inessential scaling parameters in he homogeneous quadratic F and the selection of a
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un cue F from each equivalence class is the problem of normal forms. I: was solved

bA Isaacson, P~ohr and Temple and in a subsequent and more saisfactory form by

Schaeffer and Shearer [31]. The classification of the geometry of rarefaction curves

a a number of preliMinary tools for the analysis of quadratic fLx RKe--a.n prob-

jers is also presented in [31]. The Riemann problems and normal forms divide into-

four cases (I, II, IM, IV, roughly in order of decreasing difficulty) and in each case

there is a symmetric subcase in which one parameter of the normal form is fixed at

zero and the resulting Riemann solution is simplified by an extra Z: symmetry.

The first Riemann problem of this class was solved by Shearer, Schaeffer, Mar-

chesin and Paes-Leme [34]. It was the symmetric case I. In rapid succession, other

cases were solved: the symmetric cases I1, I and IV by Eli Isaacson. Marchesin.

Paohr and Temple [141 and by Eli Isaacson and Temple 115], the-onsymmeric (gen-

eral) cases II by Shearer and Schaeffer and cases MI] and IV by Eli Isaacson and Mar-

chesin [32].

Only the type I nonsymmetric case remains open. The essential ingredients

which allowed the rapid progress were analytic ideas from bifurcation theory and

experiments from the numerically based Riemann solver. It seems clear that both the

analytic and the numerical tools developed will be of considerable importance for the

analysis of other Riemann problems.

2.4. New Mathematical Phenomena.

Shock waves can be clearly recognized as belonging to the i famihN if i-family

characteristics enter from both sides while the j-family, characteristics. j r k each

aross the shock, entering from one side and leaving from the other. Such shocks are

called stable in the sense of Lax or Lax shocks, for short.

It has been found that non-Lax shocks are required to solve the Riemann prob-

lem near an umbilic point. The new shocks have the structure of an q Lax shock

when viewed from the left side and an iR * iL Lax shock when viewed from the right

side. If iR > iL, the shock is over compressive and fewer than n waves occur in the
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Riemann solution. If ip < i- the shock is undercompressive and more than n waves

occur in the solution of the Riemann problem. The undercompressive shock is 2lso

called a crossing shock because it is a bridge, joining two sheets of the Hugonio: sur-

face. Both under and overcompress ,ve shocks arise.

Both the Hugoniot and the wave curves can have disconneced branchs. This

means that there are waves which cannot be continuously deformed to zero streng:h.

This fact appears to have been discovered independently by Shearer and Marchesin

before they were aware of one another's work. The Hugoniot curves can have loops.

or points of self intersection, as was first discovered by Shearer. The singularity of

the geometry of the wave curves at an umbilic point has already been noted. More-

over the wave curves may fail to havc a continuation.

One can regard the wave carve as an n+ ' dimensional surface in S x S. In the

standard theory, these surfaces are globally distinct. In the presence of umbilic

points and especially of undercompressive (also called crossing) shocks and waves,

we regard the i- wave family as a single sheet of a global wave surface, as in the case

of Riemann surfaces. Locally this surface has n distinct branches, but the branches

may join globally and may be deformed onto one another. Thus the distinction

between an i wave and a j wave may be well do.fined locally at L= U0 but this dis-

tinction is not globally meaningful in all cases.

Various topologically significant surfaces in S and in Sx S have been determined

which help to delineate the locations of possible bifurcations of structure in the

Riemann solution. These are the inflection locus on which (2.3) fails and the convex-

ity of a single mode is reversed, the Efurcaiion locus on which secondary bifurcatons

of the Hugoniot curves occur, or in other words at which the Hugoniot curves cross.

the 2-sided contact locus across which embedded shocks in the rarefaction fans enter

or leave the solution and the hysteresis locus across which Hugoniot curves acquire or

lose segments of distinct families or types.
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2.5. Elliptic Regions.

A smal percubation of the flu.x F in a neighborhood of an umb1 "i- poi-." ca

give rise to an ellipiic region t $ for which X. and X -_ are complex. l-here have

bee: three maior d'scovenr'es in connection with elliptic regions. Holden [131 stowed

that a Riemann problem with an elliptc region still has a satisfactory mathematica.

soh;-tion. Bell. Trangenstein and Shubin [51 solved such a Riemann problem numen-

caliy and also obtained satisfactory results. Finally Shearer [351 showed that elliptic

re-ions are almost certainly required on topological grounds for basic problems in

petroleum reservoir modeling.

How is this to be reconciled with the idea that initial value problems must be

hype-bolic? Evidentially the linear instability guaranteed by the elliptic region e is

on.y an infinitesimal instability And the problem is stabilized by nonlinear considera-

tions. When the elliptic region E is bounded, one could expect the linear or infini-

tesimal instability to cause a solution taking values in ( to grow, until it was forced to

exit from E, at which point it would lie in the hyperbolic region S II, and be stabil-

ized. In fact this is exacly what does occur according to available evidence; the solu-

tion, if forced to lie in t will exit with a shock and not return unless forced to do so.

More precisely, it appears that the wave path taken by the Riemann solution will not

enter E unless UR E C or Ur E C. However the meaning of this elliptic region should

be explored more carefully before this or any other explanation is accepted. There

are cases, as with the van der Waals equation of state for a compressible fluid with a

phase transition where an elliptic region results from an incorrect physical model.

2.6. Open Problems.

Most problems related to uniqueness are open: entropy. admissibility condi-

tions, and the existence of viscous profiles are not satisfactorily understood. The

proper formulation of a physically meaningful entropy is open. For the case of a sin-

gle mode, n = I, in the Buckley-Leverett equation, a physically meaningful entropy

has been proposed [41, and this could be the basis of a physically meaningful entropy

for the case of systems. Existence of the Riemann problem in the nonsymmetric case
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I is open and a solution for the full range of possible elliptic cases is open. It is

iikely that new phenomena will occur with n x n systems, n a 3. b,-: this case ha. ye

to be explored. The effect of these equations on existence theory for general data is

no: known. The case of an umbilic itne has been s:*.d:ed by Ke'f.:z and K_-anser

[181 and Eli Isaacson [17]. In this case the existence theory for genera: da'a was

solved (for small data) by Temple [38] and it turned out tha: some new ideas were

needed. In fact the total variation bounds, which are central to the existence theory.

had to be reformulated in this case as they failed when applied to the conserved

quantities U. The ability of various finite difference algorithms to solve Rieman,

problems with umbilic points or lines is not known.

Finaliy we ask whether these novel structttres in R-emann so>.:uons have any

counterpart in experimental scence.

3. Riemann Problems for Realistic Equations

3.1. Introduction.

Real problems are often not strictly hyperbolic. They may fail to be genuinely

nonlinear and usually must be considered in the large. Thus we can expect to

encounter the phenomena described in the previous section. Here we explain why

some real problems possess special features which limit the solution complexity and

others do not. Let us exclude the linearly degenerate waves, which in many prob-

lems do not give rise to complex one dimensional wave interactions. For gas dynam-

ics, elasticity and a number of other cases, the state space S is a product

S = c x ' (3.1)

of a configuration space and a momentum space. The cigenvalues, when expressed

in a Lagrangian rest frame, come in pairs ±)x, (U) and in the interior of C are never

zero. Thus umbilic points arise only from coincidence of eigenvalues among the

positive or the negative eigenvalue families. It follows that these Riemann problems

have a complexity similar to those of a Riemann problem for general systems of
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equanons.

For systems which describe species or concentrations, there is generally no fac-

torization of S and no grouping of eigenvaiues into disjoint families. Such systems,

which include oil reservoir flow equation! as an exampie, appear to be as comp.ex as

the order, n, of the system allows.

3.2. Gas Dynamics.

The main complications of the wave structure in the Euler equatons-of compres-

sible fluids are those of n = I , scalar. equations, according to the .- rule and the fac-

to'izaton (3.1) of the state space. Each acoustic mode may develop. thro-fgh se:f

interactions, composite wave struc-tures containing rarefaction waves and some

number of embedded shocks. The details .of the allowed composite waves depend on

the. equation of state, and a comprehensive analysis of this dependence has been

prepared by Menikoff and Plohr [27]. This means that qualitative as well as quanti-

tative properties of the solution depend on fluid in which the waves are propagating.

Not only are the wave properties of real fluids of interest, but those of ar.fiC.al or

simulated fluids defined by approximate equations of state are important also. In

fact, the approximate equations of state are used in numerical simulations of fluids

and any anomalous waves implied by the use of such an equation of state will occur

in the numerical simulation and so must still be understood.

There appears to be no limit to the allowed number of constuuen , waves

(embedded shocks) in a single composite wave, on the basis of thermodynamical

principles. For many materials, the change in convexity occurs at or near a phase

transition, and a simple assumption would be that at most two convexity reversals

(one convexity reversed region) would be encountered. In other words, a given

Hugoniot curve would cross the inflection locus at most twice. However fluid (P

wave) modes arise in solids also and a large number of distinct phase transitions

occur in real solids so this simple picture would not be universal.
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Thus the simplest manifestion of rea fluid properties is the splirung of a shock

a: a phase transizon, with a precursor moving ahead in the fluid phase and a second

shock following in the vapor phase. Shock splirting of this type is well known in the

engineering and applied phys,,cs " tera.r-e.

The Riemann problem for a relativistic fluid with a real equabions of state (and

a phase transiton) was solved by Plohr and Sharp [301. The phase transiton which

motivated this study was the condensation of a quark - gluon plasma into a baryon

phase in proposed experiments for a new particle accelerator.

In addition to the equilibrium thermodynamical effects considered here, mecta-

stable states and non equilibrium thermodynamics are of interest also. T.-P. Liu [251

showed how a nonequilibrium paruron of internal energy (vibrations of a diatomic

molecule) leads to modified fluid equatons. It would be desirable to supplemen: the

van der Waals [361 type of metastable thermodynamics by a more realistic and

modern treatent of metastable thermodynamics. Bethe [61 points out that the

equilibrium state behind a strong shock in water may be ice, in which case the meta-

scable water would be the preferred solution.

A comprehensive data base of tabulated equations of state has been prepared by

the Los Alamos National Laboratory for a wide range of materials [ 11. Using this

data base, J. Scheuermann has constructed an efficient Riemann solver for real fluids

[331. Colella and Glaz [81 had previously constructed an efficient approximate

Riemann solver for real fluids, using a local gamma law gas approximation to reduce

the number of calls to the real fluid equation of state. Scheuermann's work contains.

in addition, an extensive use of precomputed quantities. In his approach the rarefac-

tion curves are given by a single table look up and are thus faster than the Hugoniot
curves to determine.

Phase transitions introduce discontinuities into an equation of state just as shock

waves do for solutions of fluid equatiors. In both situations interpolations and

numerical differentiations are required and in both cases these operations cause prob.

lems when applied across discontinuiies. The front tracking software (see [7, I01

and related papers) designed for x, r space discontinuities works just as well for state

776

r rr.J



space discontinuites. It provides support for interpolation over irreguiar regions

which result from changes of independent variables, starting with a rectangle in (say)

p. e space [33]. It is also appropriate for an accurate representation of phase transi-

zon curves n S.

The existence of solutions for the Riemann problem for a compressible fluid

with a real equation of state follows from basic physical principles, which give an

asymptotic descrirtlon of the equation of state at large pressures and ensure a solu-

tion to the midstate shooting problem. Uniqueness, however, is not properly under-

stood. There are the questions of entropy conditions for complex waves, relaxaton

limits, viscous profiles or other and distinct physical principles which may be

required.

3.3. Real Materials.

We consider here thermo-elastic-plastic materials [41] or viscoelastic materials

with a simple relaxation law. Many common materials, including metals, are

described by this theory, but it does not have the thermodynamic universality of the

real fluids described in the previous section. In order to focus specifically on the

question of complex wave structure, we ignore the thermal mode.

Isothermal elasticity has a six dimensional state space with the structure (3.1).

There are three coordinates to describe positions and three to describe momenta.

There are three types of waves. The first is a pressure, P-wave or longitudinal wave.

The other two are S-wave, shear or transverse waves. One of the S-wave modes

describes torque or rotation waves. For an isotopic material (which we now assume),

there is no elastic energy associated w ,:h these rotational waves. For this reason the

rotaional waves are linearly degenerate and factor out of th,. problem. This leaves

four modes and applying t2e j- rule, elasticity has the level of wave structure compli-

cation of a general 2 x 2 system.

A remarkable analysis of the Goursat (half-space) Riemann problem for a third

order hypere!astic material has been carried out by Tang and Ting [37]. Related
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studies of nonlinear elastic waves can be traced from the literature cited in f37. The

solution is similar in structure to the solution for an isolated umbilic point described

in Secton 2.3 above. In parncular there is an isolated umbilic poin, located on the

zero shear axis in the Tang and Ting solutions. Rea- mat eriads fai" in .ensio. and it

would be of considerabie interest to determine whether the Tang and Ting umbl-Ic

point occurs within the elastic limit and if so for what range of materials and strains.

For metals, a regime of interest is one for which the response is nearly linear in

shear and tension, but becomes fluid like (fully nonlinear) in compression. Thus

aside from P-wave or fluid nonlinearities already discussed, the most striking non-

linearites of common elastic materials occur at the failure of the elastic theory.

There are at least three common failure modes for an elastic materad. These

are plastic flow, fracture. and collapse. They apply to ductile, brit-dc and porous

materials respectively. The first two are shear wave failures while the third is a P-

wave failure.

The theories of elastic failure are complex, phenomenological and incomplete.

We discuss the case of plasiic failure, which may be the best understood of the three.

At a microscopic level, plastic flow results from a breaking and reforming of molecu-

lar bonds. This process produces several effects. Stored elastic (potential) energy is

converted into thermal energy, with the result that elastic forces (stress) are reduced

and the unstrained reference configuration is permanently altered. Also dislocations

are produced, which alter the material properties through work hardening. Moreover

the thermal energy produces heating and heat softening of the material.

Making the Prandt.Reuss approximation, we assume plastic relaxaton occurs

along the normal to the yield surface in stress space, and we represent the degree of

plastic flow by a single scalar variable ip. The resulting equations are given in [41],

and their main feature is a new equation and mode for , the amount of plastic

deformation. The purely elastic equations together with a nonlinear coupling to

describe plastic relaxation and the transfer of energy from elastic to thermal modes

complete the system. Plasticity should be contrasted to viscosity, whi,:h transfers

kinetic energy to thermal modes.

778

N -1
V S'O % ~-. , .- ~



3.4. O0 Reservoirs.

Tbe equanons for the a'ruraon of oil, gas. and wa*er in three phase flow in an

oi! reservoir (porous medium) are to leading order a 2 x 2 byperbob1c system. The

ec.a-ons for mos: enhanced oiL recoverv processes have the same for= bu. usua !v

have more equations. -hese equatons were the mo"vano: which lead to the srudy

of umb'"ic points as dssc-ssed in Section 2.3. In partcla.- the soluidons of these

.zations exhibit the complex wave phenomena mentioned in Section 2.4 and 2.5.

There is no reason to believe that the curren" catalog of matheatica

phenomena in the soluton of the Riema=n, problem is comp'ete, especia.2,y as addi-

tona processes and more equatons are considire.d.

4. Two Dimenalonal Wave Interactions

4.1. Elementary Waves.

The elementary waves in two d-mensions can be studied by the same global

me'hods which were used for R.emann problems in one dimension. An elementar)

wave is a scale invarian: solution of the conservation law which is stable in time. It

consists of angular sectors about a fixed origin. In each sector the solution takes on

cons-ant values or is a simple wave. Just as the one dimensional Riemann problem is

a shooting problem to connect Up to /u, through a sequence of elementar) waves, the

two dimensional elementary wave is a circular problem, to connect some state from

one of the sectors to itself through a sequence of one dimensional waves.

Theorem [101. Generically, the elementary waves for a gamma law gas are one

of the following simple types: cross, overtake, Macb triple point, diffraction and
utransmission.

The proof of the theorem is based on the following considerations. In the

steady frame of the elementary wave, one draws a circle about the origin. Because I
of the scale invariance, all of the analysis can be reduced to this circle. Points of the
circle and the one dimensional waves contributing to this two dimensional elementary
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wave are now labeled as incoming or outgoing. The incoming waves are in principle

unrestricted by the equation (1.1), but too many incoming waves are *coincidental*

and nongeneric. The outgoing waves are subject to an analysis similar to a one

dimensional Riemanz problem. and only a limited number of such outgoing waves

can occur.

The considerations of uniqueness, real fluid behavior, real material behaviour

etc. as discussed in Section 3 are important here also and are mainly not resolved.

4.1. Two Dimensional Riemann Problems.

The two dimensional Riemann solution could fail to be piecewise smooth if

there are too many solution modes (n L 3) or too many inflection points in a single

solution mode [21]. However there should be only a finite number of waves of size

greater than any fixed t > 0. To focus on these waves, we suppose for simplicity that

the Riemann solution is piecewise smooth. The Riemann solution is built up from

elementary waves.

We introduce reduced coordinates

Iit

and in the T' . plane we introduce polar coordinates

X, ' = r sin e, r cos 8.
wT t

At large r, the conservation law expressed in terms of r and e as independent van-

ables, is hyperbolic, with r as the timelike variable. The data at large r is given from

the solution of one dimensional Riemann problems. It can be continued inward to

smaller r by the solution of this hyperbolic equation until an elliptic region is encoun-

tered. Data for the elliptic region is specified across a sonic line or shock.

p Scalar Riemann problems have been solved mathematically in two dimensions

[18,21,22,39,401. An interesting set of conjectures have been formulated concerning

the solution of certain Riemann problems for isentropic gas dynamics in two

*10

N' 780I



dimensions [421.

Two dimensional Riemann problems arise when one dimens'ona waves cross or

overtake one another or when they reflect off of or interact with walls or boundaries.

Generica:'y an interacnon w; arise when two waves mee" or a s:ng'.e wave meets a

boundary; it is such simple and generic problems rziher than the fuijy general

Riemann problem which should be studied. Two problems which have been studied

extensively on the level of experiment and computation are (a) the shock-wedge

problem of reflection of a shock wave by a wedge in a shock tube and (b) the shock

diffraction problem of reflection and transmission of a shoci. wave by a contact sur-

face. Representative references for these problems are (a) [2.9] and (b) [3].

There are a series of topologically distinct patterns for the varous reflected.

transmit-ed and incident waves, and in some cases it is not known which pattern is

correct. It may turn out that on the level of the Euler equa:ion (.1). the solution is

nonunique and will be uniquely specified only by the inclusion of a length scale in a

modified theory.

Similar issues apply to the interior interaction of waves. Moreover a two

dimensional Riemann problem can also be generated by the self in:eractions of a sin-

gle two dimensional elementary wave. In fact the angles and wave strengths in a

stable elementary wave configuration will in general deform continuously during time

evolution, and at some space time point the elementary wave configuration in ques-

tion may cease to exist, either by a loss of stability relative to a more favored confi-

guration or by a failure of the shock polar equations to have a real solution. At this

point the wave pattern bifurcates. A two dimensional Riemann problem is defined,

whose solution gives the bifurcation to a new pattern formed by several elementary)

waves moving away from the bifurcation point. Both the bifurcation point and the

outgoing pattern of elementary waves it produces are also subject to possible

nonuniqueness, and again a length scale may be needed to resolve this nonunique.

ness.
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Length scales come from a variety of sources In the case of interact-on with a

boundary, there will in general be a viscous boundary layer. For the interaction of

interior waves, the viscous effects again introduce a shock thickness. Tnxs thickness

is normally very small in gasses and liquids. but is more significan. in me: . s. Relax-

ation of nonequilibrium thermodynamics also produces a ier.,.h scale and shock

thickness. For chemically reacting flows, the reacton zone defines a length scale.

normally considerably larger than a shock thickness. Heterogeneities in a medium or

in a background flow such as small scale turbuence also provide a length scade. Two

dimensional instabiiies of a planar interface may introduce a complicated pseudo-

one dimensional traveling wave with an extended thickness.

S. Conclusions

There has been a recent burst of progress in our understanding of the interac-

tions of nonlinear hyperbolic waves. This theory should be important for the light it

sheds on physical processes. It also gives analytic or explicit solutions which can be

used to check numerical methods. A very direct use for this theory and one of the

motivations for developing it has been to embed the theory into enhanced resolution

numerical algorithms, such as higher order Godunov methods and front tracking.
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STABILIZATION OF ZIEGLER'S PENDULUM BY MEANS OF

THE METHOD OF VIBRATIONAL CONTROL

G. L. ANDERSON
U.S. Army Research Office

Research Triangle Park, North Carolina 27709-2211

AND

I. G. TADJBAKHSH
Department of Civil Engineering
Rensselaer Polytechnic Institute

Troy, New York 12180-3590

1. INTRODUCTION

A planar, simple pendulum with a stationary point of support

has but a single stable equilibrium position, which is along the

downward vertical. The dynamic stability of the inverted pendulum

can be.realized through the parametric loads that arise from the

inertia forces induced in the pendulum when its point of support

is made to move in an oscillatory manner. The horizontal

component of support point motion acts as an ordinary forcing

effect on the motion of the pendulum. The vertical motion of the

support point is more interesting, however, since it acts in a

parametric manner on the rotational motion of the pendulum.

Thus, if the motion of the support point is periodic in time, the

response problem then becomes mathematically one of the solution

of Mathieu's differential equation, which possesses a periodic

coefficient.

This means of stabilizing the inverted pendulum was
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investigated by Stephenson [1] to t3] shortly after the turn of

the century. In particular, he showed that if the pendulum's

point of support undergoes a small amplitude but high frequency

oscillatory motion in the vertical direction, then the inverted

configuration becomes stable, and the pendulum performs small

oscillations about this stabilized upward position. Since

Stephenson's investigations on the subject of induced stability.

numerous other investigators [4] to (46] have studied the

possibility of stabilizing the inverted pendulum and other

related mechanical systems.

Notable among the early publications that appeared on the

possibility of induced stability is a paper by Lowenstern [a].

Him approach was based upon the introduction of a new set of

coordinates for the purpose of eliminating the effect of the

rapid oscillations on those coordinates that do not receive the

.apid periodic variations. Then he considered mean values of the

pertinent coordinates over a period or a finite multiple of the

periods of the imposed oscillations. In Lowenstern's averaged

equations, all the coefficients become constants. This

represents an early attempt to apply an averaging scheme to the

class of problems in which the equations of motion contain

periodic coefficients. Bogdanoff (81 employed Lowenstern's

cocrdinates and devised a proof of the fact that for certain

.imposed motions the solutions of the oscillatory coefficient

system and the constant coefficient system always remain close to
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one another. In Bogdanoff's work, the parameters of the system

are subject to rapid stochastic variation in time.

In a somewhat related investigation, Hsu 113] has studied

the stability of inverted pendula whose supports are subjected to

an oscillatory motion. In the case of systems of several degrees

of freedom, he determined conditions under which the equations of

motion could be decoupled into a set of independent Mathieu

equations by means of a similarity transformation. The method of

averaging was not used, and stability conditions were obtained

from stability charts.

As mentioned above, the equation of motion of the inverted

pendulum whose point of support is driven harmonically in time

contains a periodic coefficient. Consequently, the condition

that determines the state of stability of the system is

frequently derived by means of Floquet theory (see, e.g., Bolotin

[47]). This procedure, which is typically complicated and

laborious, can be avoided through the application of the method

of averaging according to a technique described by Volosov [18],

(19). In essence, the method of averaging serves to transform

the original equations of motion containing periodic coefficients

into a simpler set of equations of motion that have only constant

coefficients. With this simplified system of equations, it

becomes possible to apply the well known stability criteria for

physical systems subjected to autonomous loading or support

conditions. Meerkov [16), (17) has discussed this technique when
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applied to the vibrations of mechanical systems with a discrete

number of degrees of freedom. This technique has evolved into

what is now sometimes called vibrational control theory. It

consists of an analysis of the averaged equations of motion,

where the objective is to stabilize the equilibrium configuration

of a mechanical system (such as an inverted pendulum) through

through the application of the appropriate high frequency, small

amplitude motion of its point or surface of support.

The stability characteristics of a double pendulum with

elastic hinges that is subjected to a constant follower force of

magnitude P were studied by Ziegler [481. He determined that

such a non-conservatively loaded system becomes unstable by

flutter when the critical value of the load is exceeded.

Herrmann and Bungay [491 examined the stability- of Ziegler's

pendulum but assumed that the direction of the applied load P was

determined by a parameter a called the tangency coefficient.

When at 0, the load is a purely conservative force, and when a =

1 it is a tangential or follower force. If a < 0, the force

is termed anti-tangential, if 0 < a < 1 sub-tangential, and if

a > 1 super-tangential. The system becomes unstable by

divergence or flutter depending upon the value of the tangency

coefficient. Later, Herrmann and Jong [50) considered the same

problem for the case in which the influence of viscous damping in

the hinges was also included. Tso and Fung (51] subsequently

investigated the parametric instability of Ziegler's pendulum
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under the combined actions of a purely tangential force (a = 1)

and sinusoidal base motion. In particular, they determined the

conditions for instability in the non-resonance, parametric

resonance, and combination resonance cases.

In the present investigation, Ziegler's pendulum with

elastic hinges and subjected to an externally applied force of

magnitude P whose orientation is specified by the tangency

coefficient a is again considered. However, the base upon which

one extremity of the pendulum is elastically restrained is

made to undergo a sinusoidal oscillation along the undeformed

axis of the system. It will be assumed here that the base

motion is of small amplitude and high frequency. The goal

is to stabilize the system by means of vibrational control, i.e.,.

high frequency, low amplitude base motion. The equations of

motion are linearized relative to the undeformed equilibrium

configuration of the system, and the method of averaging is

applied to the system of equations containing periodic

coefficients in order to generate a simpler and more convenient

system of equations with constant coefficients. This latter

system serves for the purpose of easily computing the critical ]

flutter or divergence loads for the system as a function of the

tangency coefficient.
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2. REVIEW OF THE METHOD OF VIBRATIONAL CONTROL

Before the question of determining the possibility

of stabilizing Ziegler's pendulum through the action of high

frequency, low amplitude base motion is addressed, it is

worthwhile to consider the method of vibrational control as it

may be applied to the general class of discrete physical systems

whose motions are described by a system of second order linear

differential equations with periodic coefficients. In this way,

the requirements that the system must satisfy in order that the

method of vibrational control can be applied will be exposed.

Consider the system of differential equations

2T(t) + 61(t) ~(t) + [ FB + -q(t)JI~(t) = 0, (2.1)

where C is a small parameter and D(t) and q(t) are known periodic

n x n matrices. Moreover, it is assumed that

D(t) = D + D (t)- .-o -1 'i

and that D (t) and q(t) have zero mean values, i.e.,-1 -
M(D (t)} = lim (I/T) D (t) dt = 0. (2.2)

T o

M(q(t)) lim (I/T) q(t) dt = 0. (2.3)

In order to apply the method of averaging, Equation (2.1)

must first be transformed into a suitable form, namely, a

M
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particular type of system of first order ordinary differential

equations. For this purpose, it is convenient to introduce the

following transformations:

((t) = y(t) + EQ(t)y(t), cP(t) = ez(t) + eQ w(t ) (t) , (2.4)

where Q(t) is an arbitrary n x n matrix that must assure the

periodic character of _ (t) . A condition that will serve for the

determination of Q(t) will be introduced later. It is also

assumed that the mean value of the matrix Q(t) shall vanish:

T
M(Q(t)) = lim (I/T)C Q(t) dt = 0. (2.5)

Two

A differentiation of (P in Equation (2.4) yields

whence

(I + CeQ) =ez.

aor, upon rearrangement,

z Rz, (2.6)

where

R (I +FQ)- (2.7)

with I denoting the identity matrix. The derivative of the_

expression in Equation (2.4) is
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= Q.Y- + 6 QX. (2.8)

Substitution of Equations (2.4) and (2.8) into Equation (2.1)

leads to

+ q) y Qy 6D + B + qQ +EBQ]y - &Dz. (2.9)

Eliminating y between Equations (2.6) and (2.9) , one obtains

z=-(Q + q)y - 6(8 + qQ +D6 + EBQ)y - e(D + QR)z. (2.10)

To this point, the matrix Q(t) has been assumed to have zero mean

value but has otherwise been left completely arbitrary. At this

point, it is now required that

Q(t) + q(t) = 0, (2.11)

so that Equation (2.10) assumes the form

6 -- V (2.12)

where

U B + qQ + DQ + eBQ, (2.13)

V D + R. (2.14)

Equations (2.6) and (2.12) are in the general form to which

the method of averaging is applicable, namely,

6 z- - evz. (2.15)
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The theoretical foundations of this technique are discussed in

References (16] to (21] and (52]. The average values of the

matrices R. UI, and V are defined to be

R~ M(R), UJ =M(U). V () (2.16)

where

T
M(R) lim (1/T)C R dt. (2. 17)

T b-0

etc. Substitution of Equations (2.7) , (2. 13) , and (2. 14) into

Equation (2.16) yields

R M((I + EQ) 1(2.18)

B + M(qQ) +. M(pb} + egM(Q),

=B + M(qQ) + M(D Q), (2.19)

V= M{Q) + M(QR}

= Do + M(§ (2.20).

where D =D + D (t) , Equation (2.2), sand M(Q(t)) =M{Q(t)} = 0

have been used. Now the averaged forms of the differential

equations in Equation (2.15) are

- Rz, Z -U*Y-e Ez.

But
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.2

whence

-V + CUR z 0. (2.21)

This is the important system of differential equations that the

method of averaging generates. It is related to the original

system in Equation (2.1) that possesses time dependent (indeed

periodic) coefficients. Even though this new system in Equation

(2.21) has constant coefficients, it still serves to furnish

important information regarding the state of stability of the

-original physical system under consideration. In the sections

that follow, the analysis described will be based upon the

consequences of this simplified system of ordinary differential

equations.

It is possible to integrate Equation (2.11) twice. Thus,

a first integration leads to

t
i(t) = 4( 0) - q(x) dx. (2.22)

A second integration gives

Q(t) = Q(O) + Q(O)t -q(x) dx dy

- 2(O) + §(O)t - (t - x)q(x) dx. (2.23)

Taking the averages of Equations (2.22) and (2.23) , one finds
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that

4(O) - M( t x) dx} MU(T - t-~)

= lrn (l/T) (T -t)q(t) dt (2. 24)
T *. o0

and

t
Q(O) = -M(Q(O)t - (t - x)q(x) dx}

= -(1/2)lim (l/T)(6(O)T 2  ( T -t) 
2 q(t) dt). (2.25)

T00 o -

Once the constant matrices QCO) and Q(O) have been evaluated from

Equations (2.24) and (2.25) , respectively, the expression for

J(t) becomes completely known from Equation (2.23).

Example. Let Q(t) = EQ Cj t)] and q'(t) [ q. ii(t)), where,

for i,j = 1(1)n,

q. Cit) = s i sin t + r. isin(J.i t), Vi 0 1, (2.26)

the quantities a.. * r,. and V ii being known constants.. The goal

is to determine 2(t) from Equation (2.23).

According to Equations (2.23) and (2.26) , it follows that

t

Q. (t) =Q. (0) + Q )(O)t - (t - x)Es sin x +

+ r. sin(V iix)] dx. (2.27)

Now

Ct (t x) sin x dx = t -sin t,

UL
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(- X) 9sin() .x) dx =(Ilya.) (4J .t -sin P~. .t).

so that Equation (2.24) leads to

I.
Q.(0) = ur (l/T) (T - t)[s. sin t + r. sin(V/ .t)] dt

- ur (l/T)Cs.i (T -. Sin T) +(r/ ) (V.t .WijT-

-sin(Y/ .iT)]

13+ (2. 28)

To-evaluate Q j(0) in Equation (2.25) , the following integral is

required:

(- t)2 q-3 Cjt). dt = s :(T - t) sin t dt +

+ r (T - t)2 gin(L/ .t) dt

2T + 2 cos T - 2) + (r./ .

+ 2 cos(V. .jT) -2). (2.29)

Hence, from Equations (2.25) and (2.29) , it is found that

Q ,(0) =-lim (l/T)Cs..(1 - cos T) + Cr. /V 1

-cos(. .T)) 0. (2.30)

Therefore, inserting Equations (2.28) and (2.30) into Equation

(2.23), one has
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Q. (t) + (a.. /V r )t * (t - x)(s ijsin x +

+ ri uin(. .x)] dx

s.a. sin t + (r. /v )in(iJ .t) . (2.31)
ii 13 iJ 1

Consequently, given the elements q 3 i(t) in Equation (2.26) , the

corresponding elements Q i(t) are determined to be those stated

in Equation (2.31).
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3. THE EQUATIONS OF MOTION

Consider now Zielger's double pendulum mounted on a movable

base of mass mi1. The base moves as a rigid body in the x- and y-

directions as shown in Figure 1. The xy-axes remain stationary,

whereas the x'y'-axes translate with the movable base. The

coordinates of the support point are (x (t) , y0 (t)) relative to

the stationary origin 0. The mathematical model to be used here

parallels that described by Herrmann [53). The double pendulum

consists of massless rods that carry masses m2 and m3 that are

concentrated at their extremities. The rods are of length e .

Linear elastic hinges are present in the joints of the system.

The associated rotational spring constants designated cI and c2.

The force. of gravity acts in the direction of the negative y-

axis. A force P of the follower type is applied at the free

extremity of the double pendulum. The parameter (, called the

tangency coefficient, measures the degree of deviation of P from

the vertical direction. A force F defined by

F = F i + F 1 (3.1)

is applied at 0' to cause the base of the system to translate in

the xy-plane. In Figure 1. g denotes the acceleration of

gravity, whereas (f and represent the angular displacements of

the two rods in the pendulum relative to the vertical axis.

For the purpose of deriving the equations of motion, Kane's

method has been used. It consists essentially of employing the
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expression

*!

K + K. = 0 i = 1,2,3, (3.2)

where K and K. are the generalized inertia forces and

generalized active forces, respectively. Since Kane's method is

described in considerable detail in References [54] to (56], the

various steps in the derivation process will not be reported

here.

The equations of motion for the physical system depicted in

Figure 1 can be shown to be

(m 1 + m2 + Mm + m )Y0 2 sinp + (m M cos'P

1 2 3 2 3 1 - 3 1co

m .2il sinhp2 + mI~J cos 12 + P sin (O(T2 ) Fx, (3.3)

(m 1 + 2 + M3 ) - (m2 + ms)(2 cos, - (m2 2 Cos).( sinp 1

- m2 cose - mf 2 s n + (m1 + m + m)g +

+ P cos( 04 2 ) = F y (3.4)

Iy

(2  i 3 )c Tp1  2 (i(m2  + m 3)L~sn1 4(n 9i3 2 1

1 sn ( f + m3 k
2 *2 cos( - -

-(m 2 + m3)19 singl + (c + c2)Wi - c 2cp2 -

- p sin ( -90) : O, (3.5)

m83  c o(P2 - 3 fl sin0e2 - 3 T 1 sin(p 1  ( ( 2) +
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" MX91Cos ((P1  T ( 2 ) + m3 L 2 T 2 - m 3 fg sin V2 +

+ c 2 ((P 2 -1 - PL sin (1 -O )Y 2 = 0. (3.6)

Suppose that the motion of the double pendulum is such that

I jI << 1 for j = 1,2, i.e., it undergoes small oscillations

about the translating vertical axis y'. In this situation the

non-linear differential equations in Equations (3.3) to (3.6) can

be linearized relative to Ti "P2 = 0. The results of the

linearization are the following:

(in + Mn + Mn +~ (in + M)L In 3+ 2 + Poq 2 =Fx (3.7)

(m I + M 2 + m3 )y + (m 1 + m2 + Mi3)g + P = F (3.8)

(m + mJ X- +(m + M)12.0 . f2 . c+C.'
(2 4i 3 )~ i 2  3 m 3 A 1  3 x P2 + c 1 + 2 -P-

- (m 2 -+ M 3) e(g + Y) 1 i + (".o- c 2 )p 2 = 0. (3.9)

mn2 3 +  M +2. i 3
2..- c~~ - cc P9(1 - 0) -

- M3 2(g + y)192 = 0. (3.10)

Next let

m = a'm (3.11)

where O is a parameter and, as was done in Reference [53],

m= 2m, m5 = m, and c= c2 = c. (3.12)

Morever, if Fx and Fy are given as explicit functions of time t,
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then Equations (3.7) to (3.10) represent four differential

equations in the four unknowns x, y, 91,i and T 2  Suppose further

that the translational displacements of the point of support x(t)

and y(t) are known explicitly, namely,

x(t) = 0, y(t) = yo sinX2. t. (3.13)

Under these assumptions, Equations (3.7) to (3.10) assume the

forms

F = 3m 1 + ma-2 + C . (3.14)

F = (3 + 0)mg + P - (3 +O')y 2 sinfl.1 t, (3.15)
y0

and

5m 2 + + [2c - P .- 3m l(g - yo a04 sin fl t) 1 I

+ (P"(% - c)(P2  = 0, (3.17)

12 + m12(2 - c~ cc- P1 (1 - 0) -

mI(g - y0 2 sinflt)1(p2  0. (3.18)

The differential equations in Equations (3.17) and (3.18) are

linear and homogeneous. It is important to note that each of

these equations contains a term in which a periodic coefficient

appears. For the determination of the state of stability of the

vibrationally controlled system, it suffices to consider only

Equations (3. 17) and (3. 18) . These equations are particular
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cases of the more general system of equations stated in Equation

(2.1). However, if a small parameter can be introduced into

the equations stated above, then the method of averaging can be

applied, and the averaged system of equations in Equation (2.21)

can be employed for the determination of the conditions for

stability of the non-conservatively loaded double pendulum shown

in Figure 1. It is much more convenient to deal with the

averaged equations than with those stated in Equations (3.17) and

(3.18).

In the event that g = yo 0, Equations (3.17) and (3.18)

become identical to those considered by Herrmann and Bungay [49].

It may be observed that the dimensionless parameter associated

with the mass of the movable base does not appear in the central

differental equations in Equations (3.17) and (3.18).

It is convenient to put Equations (3.17) and (3.18) into a

dimensionless form. For this purpose, the following quantities

are introduced:

z D6= :y/L, w :
22 22

(A) =.CA) (Iyo r = c/(mJ 22y ) , Q0 = P, / ( m ' l  )1 2

Using Equation (3.19) and combining Equations (3. 17) and (3.18) ,

one can easily express the dimensionless forms of the system of

differential equations under consideration in the form required

in Equation (2.1), namely,

8r
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2[

T) + [62 B + 6eq(P(') 0, (4P = dIW/d'1 (3.20)

since D() = 0, i.e., no damping terms have been included in the

present analysis. where the elements of the B and q(T) matrices

are

B = (3r Q - 30 2 )/2, B12 = (-2r + Qo + W2 )/2'

2 (3.21)
B = (-5r + Q + 3(A) )/2, 22 = (4r + (2o - 3)Q - 3c2 3/2,B21 (-* o ' B 2o "'

Sll = 3/2, s12 = -1/2, s21 = -3/2, = 3/2, (3.22)

with

qg(T) = s sinT. (3.23)

Equation (3.20) is in the canonical form, so that t he theoretical

results developed in Section 2 can now be applied for the

specific forms of the quantities stated in Equations (3 21) to

(3.23).
1The system of differential equations in Equation (3.20)

desribes the small motions of a non-conservatively loaded double

pendulum whose point of support is driven in a sinusoidal manner

, along a vertical axis. Restoring moments are exerted at the

hinges located at the point of support and at the joint of the

double pendulum. The intention here is to show that, when the

point of support is driven at small amplitude and high frequency,

the critical value of the applied force can be raised, i.e., the

system can be stabilized.
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4. THE AVERAGED EQUATIONS OF MOTION

In lieu of working with Equation (3.20) , which has periodic

coefficients, it is desirable to determine the explicit form of

the differential equation in Equation (2.21) that has constant

coefficients. To determine the quantities V* and U*R*, it is

first necessary to evaluate Q(T) . This has, in fact, already

been accomplished in the Example in Section 2. Equations (3.23)

and (2.26) are equivalent if r = 0 for all i and i considered.

It follows from Equation (2.31) that

Q_ : q C( r ) , ( 4 .1 )

where

q(T) = .sinT. (4.2)

It is easily shown from Equations (2.18) and (4.1) that

-1 -R M((I esq()) I M( (I + Cs q(T))/G(T)), (4.3)

where

G(T) 1 + 36q(T) + 3g (T)/2. (4.4)

Then from Equations (2.20) and (4.1) to (4.4) , one finds that

s M ( Cr ) R _ s M ( q (r ) C I + C s q (T ) / G (T ) }

sM(4(T) I (T)} + M(q(t) (r)/G(T) 0 (4.5)

since
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qI,

M{ ' / (,) l=Iim -dt€i
TM*) T o1 + 3q + 3eaq /2

T 1 2 + (3 + 4T)q(T)

64-3 T*I-T L2 +E6(3 ;rn -i (T)

and

M~q(t)(T)/G(T)) =11 -Jd f
T *00 T 1 36q + 3eq2/2

1 12
--- lir- lnl + 3eq(T) + 3e q (T)/2] -
3e " T400 T

- M ( ~) /G( )} = 0.

Now.Equation (4.3) yields

R = IM{I/G(It)) + es Mfq(T)/G(T))

= I - e(31- s )M~q(t)) + 62 [(15/2)I

- 3s- ]Mq 2(T)) 3 [181

- 1 3 4
- (15/2)s IM(q ('l) + 6 4 (279/4)I -

-18 1 ]M(q4 (T) + 0(6 5 ) (4.6)

in view of Equations (4.2) and (4.3), where the right side is the

result of exparding the quantity 1/G(I) in terms of the small

parameter e. But W
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q(T) = ain't, q2(T) = (I - cos 2T)/2,

q&() = (3sin't - sin 3T)/4, q () = (3 - 4cos 2t + cos 4T)/8,

so that

M(q( )} = M(q3 (Y)} = 0,

M(q 2(T)) = 1/2, M(q 4(C)} = 3/8.

Therefore, Equation (4.6) is reduced to

2 -14S
R =I + 9- ((15/2)1 - 3s- J /2 + 3F_ 4 (279/4)1-

-1 5
- 18s 1/8 + O( 5) (4.7)

Because D1 (T) = 0 and by virtue of Equation (4.1), Equation

(2.19) becomes

U B + _2 M(q 2 (t)1

= B + a 2/2. (4.8)

Therefore, the product U R to a first approximation is, in

view of Equations (4.7) and (4.8)

U*R*2 2
U R B + s/2 + O(e). (4.9)

2
Neglecting the 6 -term in Equation (4.5) , one has as the specific

form of Equation (2.21) for the problem under consideration

z+ Az 0, (4.10)
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where

A = B + s 2/2 (4.11)

with the matrices B and s being defined in Equations (3.21) and

(3.22) . The elements of the matrix A are obviously constants;

specifically, the A are

A 1  (3 + 3r - Q 3W 32 )/2, A 2 = (3/2 + 2r - A
2 )/2.,

2
A 2 1 = (9/2 5r - Q 0- 3W )/2, (4.12)

A 22= (3 + 4r + (2o( - .3)Q - 3w 2)/2,

*by virtue of Equations (3.21) and (3.22).
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5. STABILITY ANALYSIS

The determination of the state of stability of the

sinusoidally driven Ziegler's pendulum is based upon a careful I
examination of the eigenvalues associated with the system of

differential equations in Equation (4. 10).

A solution of Equation (4.10) is sought in the following

form:

ii

zate (5.1)

1/2

where a is a constant column vector, i = (-i) , and ) is the

eigenvalue (i.e., the dimensionless natural frequency of the

system) to be determined. Substitution of Equation (5.1) into

Equation .(4.10) yields the system of homogeneous algebraic

equations

2 2 A)a = 0, (5.2)

which has a non-trivial solution of and only if

Det(;k 2 - _ 2 A

whence, upon expansion,

24 2 2 4A(A A22)+),+2 (A1 1A2 2 - A1 2 A21 0, (5.3)

where the A..'s have been given in Equation (4.12). In
iJ

particular, Equation 5.3) can be expressed as
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S- 2/2)E7r + 6(1 - c) + 2(O, - 2)Q 12 +

+ (F /4) (2(1 - X)Q 2 + 2(w 2 - 3(1 - .) (1 +

+ r - 2 )]Qo + 2r 2 
- 1OrW 2 + 6 ( 4 + 9r/2 -

- 9a2 + 9/4} 0. (5.4)

The forms of the dimensionless parameters in Equation (3.19) were

introduced for the purpose of expressing the system of

differential equations in Equations (3.17) and (3.18) in the

canonical form of Equation (2.1). Now it is desirable to select

a new set of parameters in order to conform more closely with

previously published investigations on non-conservatively loaded

systems, such as those reported in References [48) to [51) and

[53), for exampie. Therefore, the following definitions are

made:

Q PI/c, "= mgf/c, = yo/,

(5.5)
fl= -l (/ V/2 4)

The quantity Q denotes the dimensionless load parameter, V the

gravity parameter, and 0 the natural frequency parameter. The

quantity e is a measure of the amplitude, and SI is the

dimensionless frequency of the vertical sinusoidal motion of the

point of support of the pendulum. The product of heand n is

designated as of; it is a measure of the motion of the point of

811



22 2
support. It is easily shown that r = Ila2 i /0Y

2 and Q0

2
Q/l Using the quantities defined in Equation (5.5), one can

express the frequency equation in Equation (5.4) as

4 ( 2/2)[7 + 6(o2 _ y) + 2(o - 2)

+ (g:4/4) (2(1 _ )Q 2  + 2[IV - 3( -1 ) (I - Y +

+ d2 ) Q + 2 - 100 + 672 + r2 (9/2 - V +

+ 9d 2/4)) = 0. (5.6)

The value of the dimensionless critical divergence load Qd

is determined from the condition of vanishing frequency (C;= 0).

In this case, Equation (5.6) becomes simply

8(1 - C)Qd + 8[(7 - 3(1 - a) (1 - Y + a 2 ) )Q + 8 -
d I

- 40Y + 241 2  + (2(18 - 36Y + 9t ) 0. (5.7)

This is a quadratic equation in Qd' so its solution can be

determined by elementary methods. It is evident that the value

of the critical divergence load depends only upon the tangency

coefficient, and the gravity and base motion parameters.

The value of the dimensionless critical flutter load Qf is

determined from the condition of the coalescence of the two

natural frequencies of vibration of the system, i.e., 'i = )"

This implies that the discriminant of the quadratic equation in
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Q2 in Equation (5.6) must vanish. Expansion of this discriminant

leads to the following equation for Qf:

4(2 - 2i + A2 )Q + 4 ( - 8 + 4 - + 41 -f f

44Y + 12V 2 + C2 (66 - 36) + 27a 2 0. (5.8)

Equation (5.8) is a quadratic equation in Qf. Obviously, the

value of Qf will depend upon the values of the tangency

coefficient Ot, the gravity coefficient V, and the support motion

parameter (0.

If one sets Y = 0 in Equations (5.7) and (5.8), they

become

(1 -o)Qd - 3(1 -)0d + 1 = , (5.9)

and

2( - 2*t + 2)Qf + 4(ok - 8)Qf + 41 = 0, (5.10)f(2 2 2)Qf

respectively, which are the expressions equivalent to those

reported by Herrmann and Bungay [49).
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6. NUMERICAL RESULTS

In this section, the information regarding the state of

stability of the double pendulum contained in Equations (5.7) and

(5.8) will be extracted by analytical procedures, in so far as

possible, and then by numerical computations. The goal is to

plot stability diagrams, i.e., plots of the critical divergence

and flutter loads versus the tangency coefficient 0(.

Equation (5.7) can be expressed as

2.
8(1 - )Qd - 8(b1 - cib2)Qd +  b3 = 0, (6.1)

where

bi = 3 - 4Y + 3a 2 , b 2  = 3(1 , + a 2 .

(6 2

b = 8(1 - 5' + 3Y 2 ) + g0"2(2 - 47 +02) (6.2)

The solutions of Equation (6.1) are easily shown to be

Qdl = (8(b1 o b 2 ) - 4 4 2C2(b - ocb 2 - (1 - )b 3]1/2}/i 1 -o0)

(6.3)

Q =  (8(b - ob ) + 4 4 212(b - cb 2 ) 2 ( - 0)b 31/2)/16(1 - 00d2 1 2 1 23

Each expression in Equation (6.3) represents a branch of the

stability diagram. As will become evident later, it is useful to

know for which value or values of a will these two branches merge

(Qd = Qd2 " This condition implies that

2(b - ¢ 2 - (1 - o)b = 0, N
1 2 3
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which leads to the following quadratic equation in 0:

2b2t 2  + (b - 4blb )O + 2b2 - b 0. (6.4)23 1 2 4

The solutions a m of Equation (6.4) are given by

36(1 - 7 + 2 = 4 (7- 11- + 6d 2  + 3a2(18 - 16Y +

2 2 2 21/2

- ~ + 0') _± (8(1 - 5V 3)' ) + Qa"2(2 - 47 + 0"2 I2

-(8( - 2Y) + 3.2 (6 4V + 3.2Y) 1/2 (6.5)

Thus, the values of m depend upon v and cr in a rather

complicated manner. In the event that gravity is absent (1 = 0).

Equation (6.5) leads to

10 + 180
2 + 9g"

4

o(ml =18( ' m2 = 1 . (6.6)

When a = 0 (i.e., there is no vertical motion of the support

point) it follows from Equation (6.6) that (ml = 5/9 and ofn2 = 1,

which are the values reported in Reference [49). In the other

extreme as the value of tends to infinity, Equation (6.6)

yields ol= 1/2 and am2 = 1.

In analogy with Equation (6.1), it is convenient to express

Equation (5.8) in a more compact form:

4aoQf + 4(ot b )Q + c o  0 (6.7)
ohf o f

where
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a = 2 - 2a + 2, b = 8 - 4-t + 6o 2 ,0 0
2 2 2 (6.8)

c o = 41 447 + 12,Y + 0" (66 - 36)' + 270"a).

The solutions of Equation (6.7) are

Qf - a ; ( 2 - 2b , + b2  a ) 1/2]12a (6.9)
0 0 a 0 0 (0

which provides two branches of the st-ability diagram in the dQ-

plane. These branches can exist only if the radicand in Equation

(6.9) is positive. Limiting values of the tangency coefficient

can be found when Qfl = Qf2' which implies that the radicand

vanishes. This condition means that

2 2

(c - 1) 2 + 2(b0 - c). + 2c0 -b0 = 0 (6.10)

must hold. But its solutions are

Oct  (33 - 40"/ + 12Y 2 + 30' 2(20 - 12'Y + go 2

( (41 - 44-/ + 12"Y2 + ("2(66 - 36Y + 2702) /29 -

- 12Y + 4V 2 + U(6 - 4Y + 30?2 ) 1/2/[40 -

S441 + 12Y 2 + r2 (66 367 + 27') . (6.11)

If gravity is absent from the physical system under

consideration, then -/= 0 and Equation (6.11) becomes

2 2 2 4 1/23(1 + ,)[11 + 9, + (41 + 660a + 270') / 2

t
= ~ 1 0 . (6. 12)t ~(4 + 30'a ) (10 + 9a"
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If the point of support is stationary (7 = 0). Equation (6.12)

yields

=t 3(11 ± 4-4)/40 = 0.3448, 1.3052,

which are the values reported in Reference [491. As the value of

tends to infinity, Equation (6.12) in the limit leads to

et = 1 t 4/3 = 0.4226, 1.5773.

The expressions for the values of the critical divergence

and flutter loads given in Equations (6.3) and (6.9) serve to

furnish the stability boundaries in the EQ-plane that are plotted

in stability diagrams. As a first set of stability diagrams,

suppose that the gravitational force is absent C)' 0) . Then the

values of Qd and Qf become functions of only the tangency

coefficient ( and the support motion parameter 0.

If the point of support remains stationary (0' = 0) , then the

stability diagram becomes that reported in Reference (49) and

shown in Figure 2. The various regions of the diagram are

delineated by boundaries of the divergence, flutter, and

stability zones, as labeled in the figure. This plot reveals

that the smallest critical load for the system will be a

divergence load as long as o < ml 5/9. Thus, even though the

loading is non-conservative when a < dml an A 0, the system

becomes unstable by divergence. For aml < O ( = 3(11 +

.571)/40, the smallest positive critical load is a flutter load.
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A tensile critical load can lead to divergence when a > 1, i.e.,

when the applied load is super-tangential. If O > 3(11 +

4-1)/40, then either a compressive or a tensile load of sufficient

magnitude can lead to instability through divergence.

For 0 > 0. it will be seen in Figures 3 to 5 that the

stability boundaries will be shifted away from those in the

reference stability diagram in Figure 2. In Figures 3 to 5, the

stability boundaries have been plotted for T 1, 2, and 3,

respectively, along with the boundaries ior T = 0 for purposes of

comparison. For. compressive critical loads, the numerical values

are shifted higher along the Q-axis, whereas the boundary is

displaced downward for tensile super-tangential loads. The

effect of the displacement of the stability boundaries becomes

more pronounced as the value of the support motion parameter a' is

increased. Clearly, for a given value of the tangency

coefficient o, the sinusoidal motion of the point of support of

the double pendulum increases the value of the critical load, be

i.t a divergence or a flutter load.

To render evident the stabilizing effect of the method of

vibrational control when applied to this system, it is convenient

to consider a couple of special values of o, namely a = 0 and 4 =

1. When the load is conservative (at = 0), the system becomes

unstable by divergence, and the value of its critical load can be

calculated from
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2 2 4 1/2
Qdl = (6(1 + of ) - (20 + 36a' + 18( ) 1/4,

which is obtained from Equation (6.3) when a = Y 0. The

variation of Qdl versus 0' as computed from this equation is

plotted in Figure 6. It is clear that the value of Qdl increases

monotonically in a non-linear fashion as 0' is increased. Indeed,

it can be shown that

Qdl = (3 - r5)/2 + (30 - 9'4)7/2o - 9 /400 + OW 6

for small values of a and that

Qd1 = 3(2 - 4 2)f 2 + 1 - (2 + F2)/Ie 1 2 1  + O(1/o 4

for large values, of o'. For the critical flutter load in the case

of a purely'tangential force (0 =) , Equation (6'.9) leads to the

expression

Qo fl [7 + 6a2 - (8 + 18.2 + gr4) 1/2]/2, 1

when = 0. The variation of Qfl with o is shown in Figure 6.

For large values of (O, this formula leads to the expansion

Qfl = 3W2 /2 + 2 + 1/126 2 + 0(1/') .

It is clear that both Qd1 and Qfl increase with increasing values

of a and that both vary asymptotically as a'2 Therefore, the

method of vibrational control offers the potential of increasing

the value of the critical load by a rather significant amount
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depending upon the value of the support motion parameter 0'.

A plot of the variation of ot as a function of cr as

determined from Equation (6.12) is shown in Figure 7. It reveals

that the values of oti and ot2 increase monotonically and very

slowly with the increasing values of the support motion

parameter.

Scrutiny of the flutter zone in the stability diagram shown

in Figures 2 to 5 leads one to conclude that the value of the

critical flutter load Q attains a minimum value in the Qf -plane
f

at which point a horizontal tangent-exists. It is of interest to

compute min Qf and the value of a, say OM1 at which this minimum

occurs. To accomplish this objective, it will be convenient to

use Equations (6.7) and (6.9) . Differentiating Equation (6.7)

with respect to c and imposing the condition that dQf /dot 0, one

finds,

min Qf = M/2(l - cM (6.13)

The branch of Equation (6.9) that is pertinent to the present-

goal is the expression that contains the negative sign before the

radical. If the derivative dQf/do of Equation (6.9) is formed,

then the condition dQf/do = 0 leads to

4(1- Nt o 1/24(l )min Qf ( - c ) M  c o  b /R I /  (6.14)

where 
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R 1 - c 0  + 2-(c - b )O( +b - 2c (6.15)
S o o -M 0 0

Substitution of Equation (6.13) into (6.14) yields,, after

rearrangement,

R / 2 = (1 - Co)aM + co - b

Squaring both sides of this expression and rearranging the

result, one finds

2.

(c - 1)0( + 2(b - c )0 M + 2c - 2b = 0,
0 M 0 o M o o

whence

o M = (33 - 40,Y + 12Y 2 + 30' 2(20 - 12y + 9o 2 ) +

+ (3 - 2Y) 2 + 3o' 2(6 - 4Y' + 3' 2)] 1/2/(4(10 - ily +

+ 3V 2 ) + 3a"2 (22 - 12Yf + 90 , 2)}. (6. 16)

In the special case of the absence of the gravitational force

(' = 0), Equation (6.16) becomes simply

3(1 + a'2) 9(i + d 2

= ,= (6. 17)
M 4 + 3. z  10 + 9

The first of the, values for 0M in Equation (6.17) pertains to

the minimum. Therefore, with this value of 0(M . Equation (6.13)

becomes simply

min Q = 2 + 30 /2, (6.18)
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a remarkably simple result. Hence, if the support point remains

immobile ((0 = 0) , then min Qf = 2. Otherwise the value of min Qf

increases with the square of the base motion parameter o1.

It is possible to derive from Equation (6.9) a relatively

simple asymptotic expression for Qf as a becomes very large. The

process is very straightforward, so the details are not repeated

here. The result can be shown to be

3a 2(2 - (6. 2 - 2)1/2 ]

Qf 2(-2+a aso (Y-0 . (6.19g)Qf ~ 2 (2 -2, a+ 1-o

In particular, when at 1, i.e., the follower force is

_2tangential, Qf 3d /2 as (I tends to infinity.

When the value of the dimensionless gravity parameter Y is

positive and relatively small, the stability diagrams continue to

resemble those in Figures 3 to 5, but now with the divergence

boundaries displaced toward the *(-axis. A transition in the

forms of these boundaries occurs when the value of 7 reaches a

particular level. This happens when-the coefficient b3  in

Equation (6.1) vanishes. Thus, when

b 3  :8(1 - 5Y + 3y'2 + 9a2(2 4Y + 0 2) 2 0, (6.20)

Equation (6.1) assumes the form

Q (I - )Q - b + cb ] = 0,
d d 1 2

whence
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Qd = 0 and Qd 3(1 - V ) - V/(t -10. (6.21)

Solving Equation (6.20) for the transition values of 7, say, 7T.

one finds

2 2 4 12T = [10 + 9a + (52 + 72a 2 + 27a i/21/12. (6.22)T

Therefore, from Equations (6.21) and (6.22), it follows that the

second expression for Qa.becomes

QdT = 3(l + t2 + (3ot - 4) [10 + 9a 2  (52 +
2 4 1/2e

720 ,2  + 27 4 ) 1/2]/12(1 - 0) (6.23)

for at 0 1. It should be noted from Equation (6.1) that when a =

I then QdT = 0 is the only solution. Now there is a vilue of the

tangency coefficient U, say o' at which the value of QdT will

vanish. From Equation (6.21) , this is easily shown to be

o =  3(1 + o 2 _ 4- T1/3(1 + d2 _ -,T (6.24)

As a special case of the results shown in Equations (6.22)

to (6.24) , one has for or = 0 (the point of support is stationary)

YT (5 + 173Y/6,

QdT = + (3 t - 4) (5 + .J 3)/ 6 (l - () , (6.25)

4o = (9 ± ;'13)/6.

In particular for YT = ( - 3)/6 0.2324, it follows from
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Equation (6.25) that o = (9 - 413)16 = 0.8991. In Figure 8, the

plotted boundaries of the divergence zones are determined from

QdT = 0 and

QdT = 3 + (3a - 4) (5 - 413)/6(1 - at. (6.26)

The boundaries for the flutter zone are computed as before. It

may be observed from thig figure that Qd = 0 is a critical load

when 7 = (5 - 4T3)/6 and O = 0. This implies that the double

pendulum will collapse under the weight of the concentrated

masses. A new feature appears in this plot, namely, the aspect

that for O = 0 the left hand divergence boundaries are

characterized by a pair of intersecting curves rather than a pair

of branches that terminate in a point at which a vertical tangent

exists. However, as soon as the point of support begins to

oscillate at small amplitude and high frequency, the intersection

feature disppears and the more familiar shape of the boundary is

restored. To illustrate this, the divergence and flutter

boundaries have also been plotted in Figure 8 for the combination

of parameters T = 1 and V = (5 - 413)/6. Again, it is evident

that the oscillation of the support point tends to improve the

stability properties of the system.

For 7 > *T' the boundaries of the divergence zones in the

stability map change their character still more. For example,

the right hand branch will now intersect the vertical line o. = 1

and will then become asymptotic to it. Thus, for a purely
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tangential force (oK = 1), Equation (6.1) leads to a single root

for Qd' namely,

Qd = -[8(l - 51 + 3) + 9.2 (2 - 4y + a 2]/S). (.6.27)

For example, when .= 1/4 and OP = 1/2, Equation (6.27) leads to

Qd= -37/32 = -1.15625.

Since the stability boundary curve intersects the line A = 1

and eventually becomes asymptotic to it, it follows that this

curve must possess a vertical tangent for a value of a that is

probably slightly less than unity. An expression for this value

of O will now be determined. If Equation (6.1) is

differentiated with respect to Qd and the derivative dX/dQd isdI
equat'ed to zero, the result is, after a lit.le rearrangement,

Qd = (b - (Xb2 ) /2 (1 - 0() . (6.28)

Substitution of Equation (6.27) into Equation (6.1) yields

22(bI - o b ) = b (1 - o()

which is a quadratic equation in o(. The solutions of this are

easily shown to be

O= {4b b - b l b (b + 8b2' - 8b b )]12 /b
1 2 3- 3 3 2 1 2 2'

or, more explicitly,

Ok (4(7 - 117 + 61 2(18 _ 16 + 9O 2 ) +
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S[8( - 57 + 372)+ g9c 2(2 - 4V + 2 /2

[8(1 - 27) + 30,2(6 - 4Y + 302) 11/2/

36(l - 2+ ). (6.29)

In the special case of V = 1/4 and 0' 1/2, Equation (6.29)

yields

= (491 + 49-21)/576 = 0.7306, 0.9742.

The second of these values is indeed slightly less than unity as

was foreseen above. The corresponding values of Q can be
d

computed from Equation (6.28) . The results are Qd = 1.0359 and

Q d -3.3484, respectively.

With the 'help of the information assembled in the two

preceding paragraphs, it is now possible to plot the stability

map for Y ) YT' As a case in point, Figure 9 has been plotted

for 'Y 1/4 and a' = 0 (the dashed boundaries) and T = 1/2 (the

solid boundaries) . It is to be observed that for a' = .0 the

boundaries of the left hand divergence zone no longer coalesce

for some value of o in the domain 0 < a < 1, as was the case in

Figures 2 to 4. Instead of curving upward as the value of at is

increased, the lower branch curves abruptly downward and tends

rapidly in an asymptotic sense to negative infinity as the value

of a tends to unity. The upper branch of the left hand

divergence zone continues to show a tendency to decrease with
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increasing (. It initially appears to approach the lower branch

but then veers away as A approaches unity. Thereafter, for

increasing a, the value of Qd decreases monotonically and tends

asymptotically to Qd = 0. -The region between these two branches

is a zone of divergence. The region below the lower branch is a

zone of stability. The right hand branch of the divergence

boundary remains very similar to those already seen in Figures 2

to 4. The region above it is a zone of divergence. The flutter

boundary is also quite similar to the analogous boundaries shown

in Figures 2 to 4. The region bounded by the upper boundary of

the left hand divergence branch, the lower boundary of the

flutter zone, and the upper boundary of the right hand divergence

branch enclose a zone of "stability.

When the point of support is made to oscillate harmonically

such that 0' assumes the value a = 1/2, the boundary curves are

not only shifted in the same senses as they were in Figures 2 to

4, but the branches of the left hand divergence zone now once

again coalesce. The low amplitude, high frequency motion of the

point of support obviously overcomes the influence of gravity and

stabilizes- the system. If the value of 0 were increased, the

degree of stabilization would be increased accordingly.
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7. CONCLUSIONS

The method of vibrational control, as applied here, has been

shown to be successful in stabilizing the double pendulum

subjected to an external force of the follower type. The

pendulum has restoring spring hinges at its point of support and

at the point of connection of its two links. Since the induced

motion of the point of support is made to oscillate sinusoidally

at small amplitude and high frequency, the ordinary differential

equations of motion of the system, -when expressed in the proper

form, can be subjected to the averaging process, which serves to

replace the periodic coefficients with constant coefficients.

This nenders the equations of motion amenable to the elementary

techniques of stability analysis and avoids the necessity of

dealing with coupled systems of equations of the Mathieu type and

Floquet theory.

To convert the original system of differential equations

with periodic coefficients into a form suitable for the

applicat-lon of the method of averaging, a convenient linear

transformation was introduced in Equation (2.4). The averaging

process was shown to lead to a system of equations - see Equation

(2.21) - that has only constant coefficients. The averaged

system is related to the original system through the

transformations given in Equation (2.4) and i = z. It has been

shown by Sethna (201 that the stability properties determined

828

%% % %% %S.

%. % .. .. '. ~ -," 5. ~



from the averaged system are a sub-set of those that can be

derived from the original system with periodic coefficients.

This observation then permits the drawing of conclusions

regarding the stabilization of the double* pendulum under

consideration based upon the averaged system of equations of

motlon.

It was shown in Sections 5 and 6 that the shape of the

stability boundaries depends upon the gravity parameter ' and the

induced support motion parameter Y. It may be recalled from

Equation (5.5) that

1/2mgl/c and 0 = yor,(m/c)

Thus, 0' is essentially the product of the amplitude y and the

frequency fl1 of the motion of the point of support. Stability

maps have been drawn for representative values of the parametersv

and 0 to illustrate their effects upon the state of stability of

the system. All the calculations reported here reveal that the

values of the cr-tical divergence and flutter loads for a given

value of the tangency coefficient oc can be raised significantly

by increasing the value of the parameter T.

.b
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Figure 1. Coor-dinate systems for the double pendulum supported

on a movable base.
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